몰 질량 of Rutin (C27H30O16) is 610.5175 g/mol
C27H30O16 중량과 몰 사이의 변환
다음 물질의 원소 조성 C27H30O16
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 27 | 53.1171 | 수소 | H | 1.00794 | 30 | 4.9529 | 산소 | O | 15.9994 | 16 | 41.9301 |
몰질량을 단계별로 계산하기 |
---|
먼저 C27H30O16에 있는 각 원자의 수를 계산합니다.
C: 27, H: 30, O: 16
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C27H30O16) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(O) * Weight(O) =
27 * 12.0107 + 30 * 1.00794 + 16 * 15.9994 =
610.5175 g/mol
|
화학 구조 |
---|
![C27H30O16 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAADUCAYAAAABZZ9dAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETEbxhQU8gAAAAZiS0dEAP8A/wD/oL2nkwAAIrlJREFUeNrtnXmUVdWV/z+voEBGAVEQxRlUHEFFTByi0s7EIdoxJurPaDQdddFpkxiTqBg7EdvuTohZDjGtHUxMJOnYximt4iwq4gyCDKIgGhVERpGh9u+Ps2/eqWtR1Kt6w33vfT9r1ap699733qlzzv2evfc592wQokwYHGxwvcFtBucZNPjxbxjsEV23i8GFqjEhRLWK3QkGUw1GGQwxuMngFj93h8HRKWH8X9WaKDadVQWiTFwGXJiD513ULgLmGgxU1QgJnqg1dgVeS17kYL3B68BQP3S1wVj/uy/wvqpMSPBEtbIC6A6siY71BJb739cAj/jfo4B/UpWJYtOgKhBl4nHg5OSFwbbAYGCWH1qdg2U5WAasUnUJWXiimvkRcJfBAcBHwAnAxTlYY6obIUStYdBosJ/B4QZ9ouM7GfSOXvc02EU1JoSodtF7yWCewZaqDSFErQvehwZm0F+1IcqNJi1EuenkvzeoKoQET9Q6yUTZelWFkOAJWXhCSPCELDwhJHhCFp4QQmQLg5zP0DapNoQsPCHrTggJnqgF3grxu9USPCFEPdAjeLasVFUIWXii1tEMrZDgibpBMTwhwROy8ISQ4AlZeEJI8OoLg/4GjdHrbvF+ctE1OxjkZOEJIapZ8B4x2Cd6farBTf73Vn7+XoM/GLzquwpnkR1CkZmvVhWy8ER7uBb4cw5OyMHpwDnARMu7j7LwChtcTvL8uU8aTDP4qh8/0uDW1LWvxTs1i+yjnBbVw54GXf3vePvzo4GLkxc5eMHgE2BHYG5G+1smY3gWUkleAxyaCxuV9gMeN5jpZd8s9ZbuZDuEIGThVS3HAmf4z8HR8Z6EpxdiPibcrFmiL/DPhKxkWwNnZbCOTwZ+m4MPffD4CLgFONXPNxpsnvzo/pGFJ0rHdTl4xS2RU4HRfnwBsDMwx891AoYAbxpskYMlFS53F+BC4HIXvSYXit8AZ7p1OisjdTwQmJ469h4w3P/+PPCH6NwAdUtZeKK8/AL4uU9edAeuAh4lJLieYvCQwW4VKtsYYAbwny52k4H9gbMJVtRo4FVgAhWMhfmsd09gIbBd6vQOfhzgsRwcm/y4GAohinxDXmMhJpe8/rzBRdHrM32W9mGDyw26GIw0+Ni3Y/rE4CqDbmUq8v6ExNvmPzOB01pwcScQJjAMeNfd3FwZ6zVncJoFa/g6g8EGcy2IHAaDDN4wGGpwtMEdqffPc9dWCJEBodzCYILBBhe+hVba2Nm2wM2ESQkDFgNjNxE6GQ48HYnj48BeZaibQ3w21vxnikEng8MMHvNZ2icMjomu/1nqMx5xy1AIkSHh29/guejmnmwwrIhf0RMYR5g8MeBTt97aav3k3Lr7m79/XYHvL6QuhhhMMmjyunjH4PyMLuMRQrTzRu9k8C2Dj/xG/3QVXE3Ysqm9NKSEqgmYROR+F0gfF7p1KQuxoQj/f1+D8QZr/P9f6a97qXcIUbvC18/d3PV3hMmNRbQvdpZMOCSu6DPA54pUzH2AJ6LPngqMbOdndbkCvhEJ/XqDWywsjRGiam/kcz0mM8XgKYPD/fg5Bj9KXTuv3utrNYzs3jx2Npm2ubnDgPui980mTEiUYrJhDGHZjRHighOB/gW+f04jrF0D831SZx/dLaLaxe5wg2cT98RgRwsdfGuDbxr8JHX9EtUakI+dvU/z2FlLS0QGESYkklnVJcCl5J/+KBU9CPHBT6PvHUvrMbeRwFORKE8/Pr9uUYiqF7ybk2ceo2M/t+DKfNPgWl9rlfxI8JrT2hKR7i5sy/3cWhe+LctcxqHAXyMRewE4KHVNe2aJhag6wbvb4MjUse8ZXOGCl7gzyY8Er2VGAFMiUXmNsLg2mZD4I+GpjkoyBngrKtNEwiTJOPKzxKuB8WiNnKhRwbvBwur9+NgvDb4ul7bdbu4HhGdJm4DngUMzVMaeLmiJm7uCfJzvdmCwmlHUsuAdZGGXkL7+eqhbdf0leO3mCBeRWWR3R5BdCU9xLAbepHizxKJGqYnYRg6eMfgP4AHPar8WOCMHiy2kBPw49ZZFavpNkuzAstSFL4u84W725YRniqeo2UTNC56L3h0GzxKsvDdz4UYlB79t4dq91fRt7htZzz+RzNZq23ixSWptt5RrgWmkJjBETQtJtQizkOCVrPNrtK+fupSFJ+pW8JQGsP7qUoOckIWnpq07C0+DnJCFJ2ThCVHrFp4ETxaeEHVj4Wm0l4UnhFxaIQtPSPB0kwpZeKJuRvGa4CWY3wvsjbCvm5CFJ0TtCt6IkH91OOF5WiELT4iadmk12svCE6JuBE+jvSw8IWThCVl4QsjCE5uqS1l4onYEz+DAOHWdJ7n5WvS6l8GZniPieMvu7rfVdJNWk7Ws7aFETVl4x9I8X0Fv4AcudlsQcpcOIuwuewpwp25SWXhqc1HNnXpj/DNwZy5srAkhO9iTBofk4Em5N7LwJMyiGgXvixZyekLIQ5qwLyFXRMyThLVuWRS8LnlPXNTJ4JF5YTY4yb2oNcBduZAFLqtl7ZyrYYMhmbSYAdzrPw9F55v47MRGpwyOpiOAR4FehJR9f+WzSZpFYWzmv3MZL2emhdkz5p0B/B54BLjJQm7drJXzeAtC/IjBSwYXZrjNRwEXAacCPQiht+NT15xIS3mJDcYZXBy9HmDwuv99hcFVqeuf9YmO/a3yyXC2BX5DPtP8UkI+1SRH6a+A/tKugsgBp3k9vk1IxH18RsvaC1jo7X1SBkVkc4NFBt2iYyMsYxaewfYGcw0G+usefp8fkcE2v9qNm7OBHwO3uSc6OXXdM8DQQgWvj6v9lQanGtxucJtBZ4NXDDYYTPTJjXLSA7iUfALmT4EJQB93yce5+2CEZNJjI9dHbJzDgRe83oyQvzf5+25gpwx5Jme5GCeJuNd6H+idISEZYfBE6lgng2UZE7wLLR+nT46dZXBDxvrnNoQUq91SxwsSvOEGw6LXm1mYjU1edzf4R4Nvm2cD82MTDNYZmMH7BueUYclK0tHfjW7Ee6IbsUd07S7AfdF1LwGfl6a1yFBgUlRXC4HzCTHRsYS8vvHA0rOCZT0WmB6V9RngT5GV/w7wlYwIye5pa87vrw8yJng/Nrgkdexogz9nrJ8eBfylheP7EhKxj4t+FrYoeB2sqF0NHnTRM4PnDQ4s0T87Gng56ujPAQf7uUHAzcB8mk+6QIiXvOnvaQImAgOkcQD0A8a7kBkhafm4FkbQgV6/GyJBPKvMZd2dEGNO2v9tL0MyyA4nLKFKzj8O7FUhATnJ4DqDLgbzowlBDE4xuMvCGtjLLLRBpYRuM/fivmEhkXl87gKDnxvkLDubjBzlBk5LgvcS8A/Rz+tFF7yocsYYvO2il7i5Wxbp43dLWR9xR+8BXOk3amKBtBR36OY38id+3cfuEnepR5Uz6HoJfJMQ8zTCdlo3tmEgONg7VtIWD3wxWNKlpL9bleujEMWlQNcWrs153/hb9H9NoKXgdWnqdT+DxyIDYJSL3ysG3zf4qcGrBkNdZMzgI4OxVuaQi9+z8wx+bbCFC/OwKKw13WBfgzMMZlkQm0rQ3dv7Jndp3+mQS1vECuzlo9paA2uC9wbAubT/8bWko68jPyFxKWH2sIEQWH8r5dpu6ubb2a9L3jPLR4N6ErsxBvM2wIebw3LCrHwhk09JWOHDQfB+Eyz28EavIpezu8Hlu4UAdTKY/Yy2WUR9Un3nPXfRG0pUp9sY3Gyw3kVsicGl5gOqwUCv99HmYRcXvQcicXzR4HNlaP/P+YRE/L1dfRLyQYOnDZ4wOMGvf9yvazK4w4I3VQ4agP/nApd4Z0PdI3nI7/+zgQs2IXj9gCuAf6cUcw1JQ94Hj3lBX6SwhuzmwrbM37/W3amt/PwR/pmJaD1P8ydF2uoez0yJ5XY1LnQHGTwTdfRXboEvdOAjt3w4WCwb/PMWWOiEHS1ng8HZBgsNbA4saAhP97THktyHsF40aeepwMgi1mkPF7YVXgefuvj3KXAAmh+JykQrQcjFYDv/7Cb/rkUG52/KsjRodAs0+R9X+URn1xJ218NbuMcPi84fCnwH+BawgxtHJ6Y+40s+8O1IiDmfTBH650bZPHzhAvJLRH5N625ushxifvSPPgTs4ec3Flhv76idBORXpOJXXWtM6AanOvqHxXSh3I2LhfRRgz07IMpTos+aZs07entI+lXcFyfSgeVKp4WZ1vMN3ouE6vcWbr72WrPjDD7xz1vqbdS5CO3Tx2B89Nmr/HXvAj9nG+9HSdvMtjCBVEyKfY8TGUmPU4bYffdU7GwpLS8RGQVMif7RaeStj7YG1tvLNn4DJN/9BnBMDQhdz9RN1K6O3sbvyvkyhg/8u9a6pdO7je8fajApupkWuqAU0wXt4f0m6UdLaN9ypdHAy5PgBS/rc5afPOtoPQ4xuD+ph4fDYuX2fnbjeXCuhZBDElu/taMuqcFRHtNL2uqPMzruHZXyHk8MmJGExcplIb1E5GVvyCEpRX/HFb1TZIEtTY3MpVLpIwhPnMRu7vZVIGxnGkz1Z5ynWnhMsJMvJE06+m0WhL3UZelncGPk5i4y+KKf29LgywbnJRagX399Evc1WOYzl91KWMxdCU/ixIPrqDa8b6/4ff3hYV+bmitBPZ64Fl7ol18HeQ8wuEBRnt4AG5bD6waTLcxiF6t8iZu77GNY3inE0seRfzqnUC8rfY8PLGJ17kdYY3gTIYZfVk6KXNYm8jNvy4EfRoo+BpiXcm3LscSg0RtguX/vKsJSiN4ZFbuRBi8nMSMPjs8x2MW38ypqRy+gXMM9+G0uCnsZzDC4xODrfu4ig23d8kxm9geWsZhjCDP+8XKlrVq4Lj15lswSb1bi8iWx7JUpq6e1lQX7k4+dG/D6wSX0Vgy2OSVMBiTfN5u2u7kt3eN7U4MkS0RWurD8LlL0kTQPMs8AjqtAGQf5DdDk5bg1o4J3nYXAbXxsnMF3rcKbu7qbe7z//ZfE0vPXvd1t3dwt1D0qVMzWnsrZ1ORZudi2hZDL0S2EZW6ODIjFlHfZ1WHAq7T8MECa9D3+Otl9dLGoJHG9ZKS8LhKYRcDXqfyOzHdGN0IWBe/2+KkYP3aBfXaHm0qX8910PM+CSzgqI0XcFXgwuglXkH8m2whPHAypcBmPdHGIRWV3Wn7EcvMKlK8zzZ/KWe1xueTpp+1SRsSiKHxVFyQuQufI3V3lldSrguXazkenzgR3wAi7XGRR8K6xsGdhq8cyUM73WhC8hyx7O9qM8cEtiSdNo+OzxMWkK2Fz3lWRm5u45HeQjZjz1ilhmw/8T2RFryRsSNKDOiOpkDjou1UGyrXIyzXI4xEG3J9RwdvDYGa0y8VOvnp+UMbK+YBFbpgvw1ho0DeD1dqf8PTOv5DdrbG2I6xN+4gwYXBgBst4AGHdY+JibyBMUGZ+IrAUNESjaNZ438s2gLDaPHEfMonBCT5D+5Q/1nRIBss40h9VOtP3Xbvf4PuIjnCJ981/z3AZO5Nf+XB+VgpUye/N4qaN8Q66md/1Nwf3Wpjt6ge8kQujadbKONUfVfqiWyfjc6ltk0RN3UNEZfvQ/36jngUvy7lE4xwJ1ZLz9BLCc8vnAf+VUWF+i9SOHKJm76GN3U+ZcC01OlWxhVdFo72ozzbPVM6RhgpXgiy8+hrtRf1aeHUteLLwZOGJ+hC8TJVTFl5tWHjKzSqXVuWUhdeu+sgR1gg2oTiJkOUkC6+GLZJ04yhOItTmsvBq1iJJN061WXhyaWXhqZyy8NrdONUSG5OFJwtP5SygMLLwWm6cqoiNXQ0LusGUbcJuGUIWnsqZMcHL6uhUlRbeFWHros9JA2ThqZzZdGmzOjpVpYWHYniy8FTOTAtetVl4GkWF2lwWXt1YeFp4LNTmsvBq3sKrNrdBFl79ubSy8KrUwtsN2DdjjVNtboMsPFl4KmeVWHg3AC/QwazwHWSdl+FVWXjFxVMynmRwpIVsYaI+LDxtDwXs479HeBm6EJJzNwFnErIznVuB8r1FyO15apVaeJksp8FZwF2EhOxHAc9ZBZIi16iFVy2C11TPjXUo+SQ+U8gn4N0V+D8KzwpfCoYBcwnp5p6ooNXZFhZ4fe2aQbHrbbAgTthj8DWD30uzOkRynxyVcVE295zqnuvJJzleR/N8mi1lhd+yTOXaCriRfBrJJBXeEuCfyFYezWHAfT7KL3WBPjojQtfNf4+ykPM1PtffQvo+0X4me788IsNl7OplXKPmCvRxoUvEZTEhmW8DrWeFLwVdaJ5IeB0hm/tBLiqJ1fkS8PkK19s2wK2E2KK52C2KyvgHv6YSQtffYILBW56O8VBLpbl0q+9ddf920xOY4239jQyXs0dkNIiI3Wie+f158rk2hxBumOTci0UWnBxwGvBm9B0PAXumrhtDsEpiq3NAmeupOyHT/HIvx1oX5f5Aowt2cm6VDxhdy2XRGfzQYLmBGaw1OMpggItfY3TtaAsumSiMBkI89F1v44990CunB1SIKP/E++Ny77dd1ISfFZUkHpU0ZP8SCs6BwFOR0M0gJN/eGN1cRD6JOlw5GrLBRfntqKz3kA/890pZfxOj62Zv4n/qqNDlDE4zmO9CZwYPGewRXfOfBr81OMDgOINXDQ5Wdy+IfwBeidr1WeB2H/QS7+h8KjcRmdAZuJCQnjG5V5Myvwocpqb8rBk8jrDzRxI7S1zZtOAs9XOFboKwnYtC0hiLvLO01V3e2QUnaciZ3iFLwZHuRiffNZV8su3+HhJ4j3z8M+FwYHpKIHcostiNMpgSCd00gy/4uX4G4y2UD4MvGfzM4KpYDMUm2RWYFLXjArfycpEH9EDKA6rURhKjgdeisjzjIaHRfo/EfXE7NW1zhgJ/jSrpBa+8jQnO6DZ8Zl9gPPm44Cp/3asDDZxuyMFl6OjdgR8BKyLXdkwLn5G4ucnk0GofMDbrSMFehyEGd0VCt8DgTIMGg80MvmfwsZ/7xMJEkCiMLWge316xibZryQMqV70PS4Wd3nCPJCaJkSd9dmU5Qy7V5ua+tZGGHAPMi87duJHPaHQL7oOUu7x1EcpX7IZsraMn8cb5NI83bspi2jpl0c4FTmhH2foB44fCPBeylW7F9XQrboyFc7Fru5e6cEFWczeDy/41H9NeS1jR0JZlUd2L5AG1lUGEGPL6yBu7dBN9f3vgz1H/fb1z8GJECw25JtWQnVKC892NCOacqIIfpjSPsG2bip29ARzTDuFMzxInccpRhDWL8RrFQuMhh3ocJbZId2rD+7oC3/F6N2D9b+DHBgP9Jh1p8GQkdDMMjlO3LUjocgZfNXjbwDbAh73gj7RvbeUuwL1RO79McWOmLU2eTSCsumgrRxBi5vYneNTgHityyKUW2IWNLxHZgeaTB/sDj6Xc3tPKUMa/N2QkKtu3cv3GZon3imI0sWv7Dh0LTndOCeun3ll7tmJhz02VbW+/SbczmGjQ5EK3yOB8y9ZaxWoQuwMNno4GjOlWnImmMVG/avJ+1JGQS3qWOD15VrB3tBVc0gSL/f9eaXCZyc3dZEPGM7bbumWUrFFbXGKznlZiZ5taItLSLPFxsfsYWbUr/XXPIseIknpa6J054QDCEyZ/dz0iN7gvMP56mOwddZW7tr3UNQsSuu1TA8Y7JRgw0hN9Scil0JUFrU2edbQeBqXqYY7B8eohnzWrf5xqyEWRQKwGfgr0rmAZB6ViZ3Nc0FqbJU7ijcm0fhJvHFiiMh4APBd15KcJAeikbO8RFrd2ioR8MWCNsOYj+IWF/7NeRetwC4Ns8nqARTP2BlsYfMXgQgt1jUEfn7H+1G/wFQaXl3hThXTIZRZteyxtU7PExazLwwxeiyzdewx2lNQ1Z+eUm2veQFmqqLSbGz+2dgX5jr5R97HEdCKsnfoo+u71wC+iAWM0zZe5TAaGy0rjdxY9zmdwsMHd/vcQj2de4s8PP+zC1tdgicEGt2y2LmORj3RrfVNLRAqdJS5WfTYa/IvBMhe91QZXJm6uh1GOMtjTXHQNeljqPjHYJ3m8sVa5ErgFODuj5UtiZytcWO4k39HT7uNM2jeL2lH6eSdPrLu7gf1oHgudRXliobUgeL8z+Ep0bjN/6mSQwSkVnMFupPnKgjjksqnJs3LV69aRmzvHoKsL39P+e5LB/X58b4NHUu9/2sITXKLC/M07UtKBxm3Efawkv4g6exwL1eNBLQveRL8JrzT4r0jwZqXdfYP/sYxs8OCW3Z+iwextmk9I3E2Fd+AxOMR/9jF4JY5vGtxkcHEhgtegLlsRSw/y+5g9SIhDXuud6xYqv+Hob6OyriVMluzkZVyrJvwMMwlPFTzjbn903xU/1lVEFhD2fjzC/4ctCM/kvujHTiQsr6oYOXgyB08SVmPcn2t+b/yF/HKbrQxOT37YyLrFzuqrFRO8pOGm+Ei7JINlfI/wdMvbarZWeTHnW2BZmCz7gh9/yW/IO/1cF8Kmt69lrPyPEqzOBd4PDyB7G3Z257OJ5lcTHkXFPY8tU267BC8DtLTl9ZKMlnGuxK5DXA38ycKC3PeA84Dbc9ncGisRuDVkc3fimYTVCzEjCJOBAO/kwhMpiWl9eksfIpe28i6tyljd/Ddh1jNhHiHITy7cpEe6azsM+I9cmJVXmxfOA4QlP9822MXgZOCbRCInskmynU9jhss4mvyyGFEf7ORtPi+rBfQNZb/rk0Q/NV9O47PeF6eu/bY2rciO65D1YPYxXsYH1Fx1w1Dyz4DXLHJpy1/fuUj0skq1pKcUanMJXoZR2kehNs/APynKwELotBUsXAtLM/6UvSw8WXgSPNExtg31PbhLYfuGabQXanMJXlXX9waVU2SJ64Gd4PEV8PbpEjxRZLdhvcopssRFYeOAw4Cna1nwNGkht0EWnogHOc3SirrrVLLwNBhL8ETdWXgSvPrrm7LwRN1aeHJp669vysITsvCELDwJnpCFJ2ThVaGqi/Iwm5B0aJksPKE2l+DVLBa2qL6esPljfwt7pX0rF7Z3l4Un1OZyaWtG7LoDtwOn5+CEHIwibE99iUb7dtVnZ4MrDJ4xeMoT4yR7o/3Mwn5+ybXDLeRjFa3zAnAB8CsJnugo+wEzc8GlTbiBkIdWo33hjAWGAIfkQs6I3wB3WejPfWmej7QLG0noIv4+KOwA/AA4E7jAYKQf391CMvv42puqeWNNCV556E/IRRuzOKM34lDgJGA5YRvtbTNYxjOBq3NugeZC9qoNhG3URWFi14uws/XvCY+WXQPcYSGD3ubAPqm3jKTEybgleNXPW8AuqWNDgPne6XpkRJR/SUgzuI/3jX0Iscas5aPdGliUOrYQ2Mb/vtbzkj5d6y5aEfgSMDkHD+WgKQcvE/ISn6+qEe0dRXMGzxp8zV/3NXjU4EsG+xksMRhrlZlESjLNLw1FYwMh5rWv/06SMs8Gjq1wPfb03y9ZGDDic88Z7Gnw3xaFCgwONLhfvXCjdTrOUrFkg6MthAhGGXyUDB7+szKJlwrRWsfqb/Ar7zQPG3zVj/+bgfnPKwaHlLFYYwhJWxJRewjYO3XN4W71JdfcQ4j5lLPuuhtc6jffXgbfM/i1x+wwGG3wokGDBK/gur3I4CepY2d4Xx1lcF/q3IsSPNHRTjfGYF4kfPcYDC7hV44kZHNPROx14PjUNQcTRv5G/xlLWD9ohBnmcaWO5biAnW2wMKqbHxh08YFiqsGTBg9YWN+IwS8tJJVOPmOEwR/UyzZax7sazIys504G/2dwogRPlLLjdXG3doXf2Cvd3Shm7Gywu6lJEqF3PVbTKXVdA/CKXzMDOMKPb516/1zghBLVx0EGUyKhm2YhqC6KX9fnGkz39IfTLExcIMET5eh8O3j8JLnRZ7zY8Ru9DzCesMjZgFX+uncr7znCxS52Zbf3c4cCr6bO7VSk/3+owaTo/19ocL5pgq3U/a7RYGeLlvT4esfeqev6qC1EKTrgEQYz1sP6HjArJThtpdEtuPddmJqASQV8TuLKLo+Echxhd9zOfu5jP/cpMAF3jdpB/7nwrwZrXeiWGVxmzdfUCSFqWPS6jocLgZUuKiuB79M2N3c08FpkhU0GhrezKINoPmM7BzjOz23hQrfBzy0Ezirgs/8+S3ximH3d4K7VQPUAIeqT1gQnzQjg0ejaN4DTilSOL6RE9B5gRz93APBcSmBbWwicA74MvBm95/6HtXhYCNEGwdkGuJnw9IEBSyjNguHElW1pxrbBrbsP/dxat/7SaXjbMksshBA0At+heVztYf9thImJawmPBZWS9IztvMiS7OdCl4jvIhfC9Czxhy6endSsQoi2Cs4CijxbWgCHkl/Ckixe3i2y5J6Pzq2LRPoqsvFInRCiirjTRWRCBcvQmTAbvDjlyvYkxOrOcov0I+BeCp9tFkIIAH7uIjPWXw8nbEdVibVSA4DbIpd1anRuth8boiYTlUILCKuf9GadU4BpVGZ3k/eBc9yVfQ64sZVyClGxm0VUL+nNOrMgLNMIW9o3tVJOISR4osMWXlaEZcMmyimEXFrRIQuvgTBJkMTQsmyJCiHBEx2y8LJsRcnCExI8UVTLKctWlCw8IcETsvCEkOCJQoUk6xZeZ1l4QoIniuUqZt3C6yQLT0jwRDFdRVl4Qkjw6sLC25BhCy9eLtOkJhMSPFHLFp5maIUET9SNhacZWiHBE0UXk6zGyWThCQmeKLqYZHUmVBaekOAJWXhCSPCELDwhJHhCFp4QEjxZeLLwhJDg1ZmFtxT4I/BshcvUD7ic/DbzsvCEEEXhfcJmn/tnoCyNhOxlH9A8sdAQfz1bzSWE6AjLXExeJGQNqxSnkM9MZsCDwN5+7mI/tlLNJYToCN+PRGYpcFHkQpaD/YDHojLMAk7zcz2BcYQ8tUbIZCaEEB1iL0KC60R0XgYOKfF3bgvcTIjLGSEJ91hCTLEz8K3Itd0AzACGqamEEMViDDAvEr57gMFF/o4ebrWt9u/4FJgAbO7nRwOvRmV4BjhITSOEKAXdgEuBFeTjZuPoeGLuBuAs4D3/3CZgErCjnx8G3BcJ3ezItRVCiJK7nBMjAXoDOLqdnzUaeCX6rGcJibYBBrlru97PLXHB7aomEEKUmyOB11Nu7vZtfO/uNI8Nvu1WXg7o7sK23M+tdeHrryoXQlSSRsKEQiJOq9zN3ZgV1p8Ql0usto8iq63BXdW3UyK6s6pZCJEltkm5ubOB41q47vSU1bZlZC2+FL1/KqWfDRZCiA5xODA9ZaHtEJ3PAT8FdvHXuxImKJLrF0SurRBCVI2bmzypsdrd3M2ia7Zw13adX7OihWuEEKJq2Nrd3CYXtbnASS6GH/uxde7aDlB1CSFqgcPILxheH7mvdwO7qXqEELVGZ+Ba4BPCerrDVSVCiFrmAPIzsELUFNoAVLRk5YF2JxYSPFEHaHdiIcETsvCEkOCJWhU8WXhCgifqxqWVhSckeEIWnhASPCELTwgJnqgmtoCGxvAomSw8UbPuixAALA6bCjQC67UVipCFJ+plEJRLKyR4oubRwmMhwROy8ISQ4AlZeEJI8IQsPCEkeEIWnhASPCELTwgJnpCFJ4QET5SAlcCbhGxmQghRuxjsYnC0wU7Rsf6Wz1GbHDtQtSWEqFahyxncZvCAwTiDyQY3+LlTLaRpjK//wOQhiCpDz9KKhJOBvjk4NhFAgugdpaoREjxRaxwC/CV5kQOzkJP2EOAVYGeDL0fXd1WVCQmeqFa6A2tSx1YDPfzvbsDA6JzcWSHBE1XLTGA4cEd0bATwgv89PQcTkhMGP1SVCSGqEoPNDWYZfNVgR4NzDGYYdNOkhZCFJ2qKHCwzOBS4CDgGmAsckoNPLPzdmHrLrUH3hKge/j/jMELw9wJpjwAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxNzo0OToyNyswMDowMA8IrNAAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTc6NDk6MjcrMDA6MDB+VRRsAAADvXpUWHRNT0wgcmRraXQgMjAyMy4wOS4zAABIiX1WW27cMAz831PoAmuIL4n6bLJBURTJAm3aO/S/90eH8kZ2AKK7MWErY3FEDsm9lPj8uH3/87esD98ul1Lqf/7GGOW31FovryVuytPL129v5fn9y9PHyvP919v7z6JStOMdfD9jv7zfXz9WqDyXsVF3G63Q1mU01VK3Oj/Hmwxc37wNYQKu1t4aJzjZcYr9vFzrpoNpWAJUANtmgg2lXGljVuo9ARqAtrHV3uvc0ZpUSYBtB3aCz6CoYpYdpZd7eHYcwePI3UxagnPgZBvOQwZwTqTsCW7AL2+tS2safvtQzfYjZAb/FzeiiKFrF64ZkCZQq7kIKIj2PDQUWakbUWdHRHFj1bKsUKQFQaZBA9nAli61jQypO5IJgezB0pHxdE9DfLDcwTKkA+ciWXyoAXjlzaCEmRkyYkkP3sM5kArnFskW9cbp0T2gsiGYY9RgXL22mh5phH9AO3blub9XbVmKuD4IuJKNeAkERCmD0g5tVd2pXDVETyMLAPMeU6EmUNDVtkat9iyoPBMV672azF1d68iCxTqTXwm626m6smSFwfbIaQdVnaTBxFKq7QE1JdR3SIaa1TQAfc+/Qc46c+WKZGTIqCQcnxmVMd0bo54z5EwVoILjI6g9VDU421RmqmwjlAk6XfiHZCVrNUIPKNIzuxc5hJB2r5mphtJz6VHMw3SMTCkyE9U3FEnTaA8MSVPWbkQfSNRcpyDKaDyaJUrs4V6HQ+Ahao3az6CzqAbWG9coKlSBe5ZSiTxhU/HeEFNBA0V3Tt37XqjqCKlHP7E60mkgY+aexCtacehZ4T7r8hVARpSMUJsazRHSz4C0d1vFTjZ1586eDg7e+zd5gy5Bt7NWyVgixvcYbhLup6pbzbvey9vt01Tc5+TT/e12zMn48jEO8VDkmHoIbNFjthEuOyYY4WrHnCJc/RhH8ejH1CFc4xguFNd5iNA0dJoWNM0iR8EuzOJHQTDMokjBMcxiSfZYWUQpmIZZXCFFDUOLLmSqYWgxRgvQMHzuqhqGF2eO+MDwEVCOFUYDPLVCDcOLMzqehuHFGZ0tHtG2Tg2Mp1mcOQIcby3OHDEOX4szR5hxCjm3Fy2zd5y6iIaRxVmCM4wcOgjOMbMXZwnOMLI4S8Q5MItzjM+5z+Isfc+XLM7ie05lcZax513PxRZC00VZaQpRF2PlXaiLsIYw+qFrnbKwk+B0hvgsAvy42YN+YEIWOJd8Kqhz+cTzx09U3F/+AZA+BudWXaXjAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAHWelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAACiRTVLLrRtBDGslRxsYD/QdaWDk5AJcxBaQBl7xIWcRIAd/liuRFKXPR7+fx/fzMf5cfj1eV1zX4/s8nyuef/49n6+4/Pf3idL7Y//91++vn8eeWr2GzvK9Yrxr9tpuAERqrfFeM1uqWFGZqMhppbFZEZ453j532w4ArRo+3jZX+SKp1A5U6PROVVZEgfwteJPt2YBU00H70mlqReVuNwViM003lTTV/EYC6uMl06OXFTCf4EYVCKRlsTGnhsAry8DpeWMKnyTrUnh4rRnSzsk2x8Czd60cPiOjidQsJQJr5kLmjVgWSfaW3neJkwRSVqs5PomDUnQUUXabrGPcGGfUPUuHroF3mOVEgOAkuscrEFTbCcV1uQ/YX7qkbshLckAa0W0KCpclydTY2iH7ZKzYwj4CHcwPrcZNUSjN8k69jqRRwNcN5THG3WB6MiXWh5cMtANxnzLdzJ3sLvdE0agcgX0JZNCoWtYEgBwm9RbxwXFiKy1hU+1kidLm8ZTyVoLHAxe8t+QBQjtyOZp5ccETpIfG7Z0rdZ4tzVuQB4jisGGqLNhUzPSMEBtnBTe4fYfYaVpIcDx//gJVX69DctZy6wAAAABJRU5ErkJggg==) |
모습 |
---|
루틴은 노란색 또는 녹황색의 결정성 분말입니다. |
관련 화합물
힐 시스템의 공식은 C27H30O16
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |