몰 질량 of Vineridine (C22H26N2O5) is 398.4522 g/mol
C22H26N2O5 중량과 몰 사이의 변환
다음 물질의 원소 조성 C22H26N2O5
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 22 | 66.3155 | 수소 | H | 1.00794 | 26 | 6.5771 | 질소 | N | 14.0067 | 2 | 7.0306 | 산소 | O | 15.9994 | 5 | 20.0769 |
몰질량을 단계별로 계산하기 |
---|
먼저 C22H26N2O5에 있는 각 원자의 수를 계산합니다.
C: 22, H: 26, N: 2, O: 5
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C22H26N2O5) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
22 * 12.0107 + 26 * 1.00794 + 2 * 14.0067 + 5 * 15.9994 =
398.4522 g/mol
|
화학 구조 |
---|
![C22H26N2O5 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEeCAYAAAAXYak7AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgs5NJs1NgAAAAZiS0dEAP8A/wD/oL2nkwAAM2RJREFUGBntwQmAFnSBP+5nZhhu76PEA8ETYVOzvEJTPCprqjVtSwPtsmPbsMOwe6xMtM1k7SL61TqZGnZoaOWapUaZSqkpnih54YWAcskx8/lv+t8UZgYYGOB93/k+jxpUpyiKokZthfG4B8vRihn4CgZ4wR54BF/QudtxpaIoigo1BDMR/AFfxGcxBW2Yht4YgeBcnZuDaYqiKCrUVARjtXccRnvBCATn6twcTFMURVGBDkBwjdUbgeBcnZuDaYqiKCrQpxF8yOqNQHCuzs3BNMVGERrCoeFj4Yxwajgo1CmKwvcRvM7qjUDwB3wan8an8Wl8Gp/GIkxTbHDhlWF6SFge5oTWkPCXsKei6OEuQrCf1RuBYBkWYzEWYzEWYzGCaYoNKuwangnzwkmhv/8VNgkfCYvDk2GQoujBvofgjVZvBIJzdW4Opik2qPDL0BZG6UA4IST8QFH0YKch+IjVG4HgXJ2bg2mKDSZsGVrDn3Qi1IV7w6LQW1H0UPsiuN7qjUBwrs7NwTTFBhOOCgnfsgrh+yHhlYqiB/stgtO114htvWAEgnN1bg6mWVED9sfBGKDoVuGEkPBpqxC+FBLeoCh6sB1wL4Kb8SWMw/fwGC7xghEIztW5OZjmRUNwO36H3+EJ7K/oNuGdIeGzViGcGRKOVhQ93GZoxu1YhEW4Ey04yAt2w704Xeduws+86C14pxd9A5cquk0YFRK+axXCD0LC3oqih6m3cfwAkxTdJmweloUbdSLUhRlhfmhUFD1IL1yHZjTYML6Ca/BHbK3oVuHnIeFIHQjvDAnfVRQ9zBkIHsLmNoyReA/uxQcU3SrsEp4Jc8OJoY//FfqFU8Ki8HjYVlH0ICOxHK0YZcP7N8xQdLvwynBXSFgcZoXnQsJfwu6KogfZDDMRfMWGcSBe5UWn4m+K9SL0CkeET4fxYVw4NNQrih7mIgQ3o9GG8WY8hl/hMszFMYpuEz4VWsKrFUXxvHcjmI/dbVib4w14I7ZSdKvwp5BwpJWE0WGfUKcoeohd8CyC0YqaEXqFRaEtbOklwstCwrOhXlH0AL3wZwSTFTUl7BMS7rOS8KaQ8DtF0UOcheAhbKGoKeH9IeEiKwlnhIRzFEUPcCiWYxkOVtScMDEkfMxKwpUh4XhFUcvCVl/nyjqewRcUNSn8NSSMtJLwREjYWVHUsvDzkOlchgZFzQl9w9KwPAzwEmFwSHhKUdSy8IGQMC/srKhJ4cCQcLuVhONCwq8VRa0Ku4b5IeGdipoV/iMk/MBKwtkh4UuKohaFPuGvIeGHipoWLggJH7KScE1IaFIUtSh8PSTMCJsqalq4MyS8ykuEujA3JGynKGpNOCq0hWXhQEVNC5uE1rAk9PESYY+Q8LCiqDVhmzArJJyuqHnhsJBws5WEd4WEXyiKWhLqwuUh4brQoPv1x5ao17He2BK9rZ2t8Qrshf6K1QqnhYRvW0mYEBI+oyhqSfhISJgTdrJ+TEIwWMdGIxita16Hm9CGIFiI72AzRafCT0LCu60k/DEkHKUoakVoCLeEhGOtP5MQDNax0QhGW3MnoxVzcAbehGMxCctxmaJT4YGQMMJLhIawILSFrRRFLQkDwrusX5MQDNax0QhGWzODsBBzsJv23ogdFR0KW4a2sDD08hJh75Bwn6KoNmGz8K/h1HBqeFvYwoY1CcFgHRuNYLQ1czqCTym6LLw+JPzBSsL7QsLFiqKahE+F+SGhLbSGhIXhc6HOhjEJwWAdG41gtDVzBYK9FV02iHHH85ev81krCd8NCR9XFNUiNIeE68KBoT7UhwPCdSFhvA1jEoLLcTEuxsW4GBfjBgSjrZlbEWyuWBuXI3inlfyAHz3KzU9yiKKoBmGXsDzcEvpYSegT/hJaw57Wv0kIbsGNuBE34kbciBkIRlszd6ENvRRr41EEu1pRXyxBKzZRFNUgfDEk/JtOhGNDwletf5MQDNax0QhGWzN/RrCToqu2RzAXdVZ0AILbFUW1CFeGhN10ImwREn5r/ZuEYLCOjUYw2pr5fwiOVHTVWxH8j/Y+guAHiqJahL+EttDXKoRF4Q7r3yQEg3VsNILR1syxCC5RdNWZCL6qvQsQfFhRVIswLbSFvlYhLA63W/8mIRisY6MRjLaikfgPvB19vagX/org02iwor2xo6Ij/4PgX7V3J4JXK4pqEX4VEnbVibB5SLjG+jcJwWAdG41gtBd9B3/CV/A/uAP9vWhn3I3gIfwEl+B2BF/xgv1xuuIf6jAbwQ5WNBCtWII+iqJahC+FhLfpRGgKCeOtfx/ET7G1jh2Kn+JQL6jHv6OXFzRgDkZZUV+cgp/jJlyPH+Hd6IcBeAzBd9CgZ9sFwWPaey2CmxVFNQl7hrbwp9BgJaE+XB/awnCVbzgWYWdd92YsRHA5+uu53oHgl9r7JIJvK4pqE84LCT8LO/r/he3D5JDwTZXtANyExRhj7R2AJxHciG30TF9H8Hnt/QTBexRFtQkN4ethWWgLD4WHQmtYHiaEXipbI3bEaMzGHtbeLrgPwQzspue5HsEbtPcAgn9RFNUqDAn/Eb4RvhE+GnZRfX6PT1g3L8dfEDyG/fQc9XgWwbZWtCXasBC9FEWtCXVhF5WpN87Ddl6wNWbh7dbdQPwKwXy8Qc8wAsFM7b0ewR8URa0Jm4fbwpwwUGX6LOZiOuZiIhp0j16YhGAZ3q/2vRvBZO19HsG5iqIWhT+EhI+qXH0wFJvqfnVoRtCGZrXtWwhO097lCN6pKGpReGtImBl66bnei2V7MbWVSaGX2nQTgsO09yiCXRVFLQp14c6Q8HY92N68aSnPhoSfh35qS288hzaMw2OYjW9jewTzUKcoalX4YEi4WQ8XDgxPhYQ/h23UhiGYgCAIgiD4E4KrFUUtC33D4yHhED1c2DXcFxLuC7uqToMxFlPRhiB4DlNwCi5HEARnKYpaF5pDwmUK4eXhryHhsfBK1WEwxmIq2hAEizAFYzDQit6JJQimop+iqGVhm7AotIVhCmFg+HVImB9erzLtjLGYijYEwUJMwRgMsGoH4ikEN2BrRVHLwndDwncVzwu9w4UhYVl4rwqwA7viM7gFQRDMw4/wFvTVNcPwIII7MVhR1Kqwe2gNz4WXK54X6kJzSGgLzTaCMCSMDVOv41oEwVxMxhj0t262w18RzMK+iqJWhctDQrNiBeGjoTUknGcDCMPC58PfQkJClnIP/htvQh/dayB+g2A+Xq8oalE4NCTMDgMUKwhvDYvCqVYSGsOrwtFhZNjSWghDw9gwNSQkJMwNLaEp9LZ+9caPESzBiYqiFoUbQsIHFe2EIV4i9A5nhmdDQkLC8nB5GGI1wvDQHKaFhISEOaElNIXeNqw6NCNoQ7OiqDXh7SHh3lCv6FSoD1NCwi/DG8Lu4aBwdlgSHg87W0kYHprD9JCQkDAntISm0NvG91G0Ivgv1CuKWhEawoyQ8FZFp8L7QsIPQp2VhGNDwq/8r7BN+HK4KyQkJDwVJoWjQy+V51+xCMHP0U9R1Irw0ZDwB0WnwrSwJGylE+Ga0BaGhK3DspDwdGgJTaFR5TsIsxHcgK0VRS0IA+dx02lMbeQARTthYFgebrEK4RMh4V3+V/hYOCI0qD574UEE07GToqgRX0UwWdFO2C0kXGYVwttCwulqw3a4BcEs7KMoasDLsBjLsYtiBWFYSLjEKoQ3h4TPqx2b4CoE83G02tcbr0YvRc36AYIJihWEl4WEqVYhvDckfEht6Y2LECzBCWpPPUbiOrQimIcdFTVpBNqwEFspVhBmhSdCg06E74WEg9SeOoxH0IZm1a8XjsREPIkgCNoQPIThipr0awSfVqwgnB8SjtOBsE2YG2aGBrVrLFoRTEC96tKAkZiAxxEEwQOYiJOxJa5DMBevVdScIxE8jr6Kfwrbhznh6XC4lwjbh6kh4R1q37FYjOBn6KeyNWAkJuBxBEHwACZgpPb64GIEz+EdiprzVwTvVqwgHBQeDwl/Cz8P14XnwrLwKT3HYZiL4E/YSmVpwEhMwBMIguB+TMBIq1eHcxC04VOKmvIuBLejTrGCsEn4SJgcfh+mhK+E3fU8w/EQgjuwk42rASMxAU8gCILpaMZ+1s5YtCKYgHpFTWjEgwheryhWbRBuRfAo9rFhNWAkJuBJBEEwHc3YS/c4DosR/BR9FTXhNARXK4rV2xzXIpiL11q/+qAJE/EkgiCYjmYM03W748NW7XDMQ/A7bKaoeptiHoJ9FcXq9cHFCJ7DO3SvPmhCC+YhCILpaMaeum4IxmIqgmAvqzYCDyG4HTsqqt5/IviRolgzdTgbQRs+Zd30RRNaMA9BEExHM/bUdcPwBfwNQRDMwX9jD6s3CLcheBR7K6raDliKpdhJUay5sWhFMAH11lxfNKEFzyAIguloxh66bjjGYSqCIJiDFjSht67ZAtchmINDFVXtxwjOURRd8zYsRvBT9NW5vmhCC55BEATT0Yzddd1wNGM6giCYgxY0obd10xc/Q7D47TQpqtbeaMMz2ExRdM3hmIfgd9jMi/qiCS14FkEQTEczdtd1w9GMOxEEwRy0oAm9da86fO0t3BIWh9MUVetWLMYSzMI0TMFENOMUNGE/DEKdonjRCDyE4E58EJOxEEHQhj/jk9hZ1w1HM+5EEARPowVNaLSeLeKToS0knB3qFFVlMJ7BcwiCIAiCIAiCRZiBP2AyJuB0jMFRGI6tFD3JYExHG4IgmI5m7KrrhqMZdyEIgqfRgiY02sDCu8KSkHBp6KuoCvX4PYKfox+GYiSOx1iMRwumYBpmIQiCIAiCIAiewyxMwxRMRDNOQRP2wyA0KGrBQQiewcewo64bjmbcjSAIZqMFTWi0kYVRYV5IuCZspqh4X0TwCLay5vpiEPZDE05BMyZiCqZhFtoQBEEQBEEQLMEsTMfVaMF4jMXxGImhaFBUspMQXKprhqMZdyMIgtloQRMaVZgwIjwcEm4POygq1v5YilaMsn70wy4YibdjLMbjAlyNO/A0giAIgiAIgmAZHsHTeAz/D30UleKbCD5l9YajGfcgCIKn0IIm9FLhws7hrpDwSHiFouJshgcQfNXG1weDsB+acAqaMRFTMA2z0IogCIKrFJXiRgSjdGw4mnEvgiB4Ci1oQi9VJmwRrg8Jc8IhioryYwTT0Fv16I0d8X78GkErNlNsbI1YjDZsrr0TEQTBI5iAQ1CvyoU+4Sch4bnwdkVFGINgAXbXsb3wIP6EX+B8fA4n4xi8Ai+z8T2N4H2KjW0/BHfr2JZ4AOfhNahXY0JD+GZIWB7+XbFRDcUzCE7WuaMRBEEQBEEQBHMwHVejBeMxFsdjJIail/XjXQjuQp1iY/oggh/p4cLY0BoSJoR6xQbXC39CcKlV642heA2Ow0dxFi7AVbgdTyEIgiAIgiAIluFR3Ixf4rv4Ik5BE/bDIDTomkY8iOANasfBeBvqdGx3vA3bqBzfR/BRhTA6LA0JPwq9FRvUmQgexpa6Rx8MxsH4V/wHvoIf4lf4G55AEARBEARBELRiFv6CKZiEM/BBHKVjpyH4rdpxJYJGHRuH4AiV4zYEBymeF44Oz4aE9yg2mEOwHK04zIbXG4MwHEdiDMZhAiZjKu7HcgRBEATBX3VsU8xD8Eq14UoEjTo2DsERKkN/LMNy9Ff8U3hl+Hqo8xLh1eG8cE24IVwePhG2UKyTzfF3BM0qWy9sj/3xZnwQzZiEZp37TwQXqg1XImjUsXEIjlAZXoPgVsUqhfrwjdAW5odfh8nhr6EtzA6HKtbaJQhuRKPatAOWYhl2Uv2uRNCoY+MQHKEynIpgkmKVwsdDwuVhCy8RDgtzwtywo6LL3odgHoaobT9G8DXV70oEjTo2DsERKsOFCE5RdCoMCHPCQ2GADoR3hITzFV2yK55FcKLatzfa8Cw2U92uRPAEnsATeAJP4AnMR3CEynAPgn0VnQrHhISzdCI0hKfCw4o11ogbEVyg57gGwSdVtysRnIPxGI/xGI/x+D2CI2x8m6EVi9Go6FT4VEg43iqEq0PCFoo1cg6C+7GpnuMYBI+gt+p1JYJGHRuH4Agb3xEIblCsUvhqSDjKKoSfhIShitV6LVqxDAfpWepwB4ITVa8rETTq2DgER9j4TkdwvmKVwudDwpusQrg8JLxcsUpb41EEn9UzvRfBbahTna5E0Khj4xAcYeP7GYIxilUKJ4WEsVYhTA8LQoNilS5DcD0a9Ex9MAvBEarTlQgadWwcgiOsqA++ikYbzoMIhilWKQwJbeF/dCLsGtrCbxSr9GEEczFYz/ZZBL9Sna5E0Khj4xAc4UV1+BmW4jLUW/+2QfAs6hWrFa4ICW+1ktArXBES3qjo1F5YiOAdii0wH8Heqs8x+DDqdWxffBjbe9EPsQTBUlxk/Xsjgt8r1kjYKTwaloSvh0PC3uFt4Q8h4XuKTvXBrQgmKf7P+Qh+oPZ9AfMRBMFi/Jf1qxnBOYo1FnYKk8PSkJCQ8Hg4NdQpOnUegvuwieL/DMFyPIft1K5T8BSCIAiCeTjD+nMlgrcruixsGg4Mo8LwUK9YpdehDUtxgGJllyI4U23aDo8iCIIgCILZ+JD14wkEQxRdEvYMh4dNFWtkGzyG4DRFR16NYA4Gqk0n4X4EQRAEQfA4TtC9BiN4GnWKLgn/GRK+qFitOkxBcC3qFZ35A4L/ULt2wlQsRRAEQRA8ijfoPm9D8GtFl4XrQsIxitU6FcEc7KhYlbcieAC91K4GnI8nEQRBEAQPYH/dYzyCLym6JNSHZ0PCtopVGoFFCN6iWJ163IXgeLXvGNyNIAiCILgPw6y7axC8WdElYXhI+Ltilfribwi+rVhTH0Jwk55hc1yJRQiCIAimY5C1V4e5CAYpuiScFBIuVazStxFMR3/FmuqHJxEcouf4BB5FEARBcBu2tHb2QPCIosvCN0PCpxSdOgZteA77KLqqGcFlepZ9cDNaEQRB8CcM0HXvQvALRZeFG0PC4YoOvQyPIxirWBvbYBHaMEzP0hc/xBwEQdCG36GPrjkPwWcUXRIaw+LQFjZXtFOPqxH8BnWKtTURwXf0TO/GfQiCYDkuQ70190cERym6JOwXEu5WdOhyBE/i5Yp1sTtasRgv0zMNxlQsQxAsxUXWTAMWoA1bKbokfDAk/EjRzgkIglMV3eFyBM16rl74LzyFIFiM863e3ghmKLosfD8kfFTRzvcRPKZzjahTrKlDETyJfnq2Y3A3guAZfNmqvQ/BxYouC7eFhIMU7ZyDYCl6a++9eAivV3TFnxF8QLE1rsZiBLPxMZ37LoKPK7ok9A/LwrLQT9FOLyxC8A7tnYbgakVX/BuCe1Cv+IdP4lEET+AEHfsLgkMUXRJeExJuUXTq3xHcpL1NMQ/Bvoo11YAZCN6i+D/74la04VG8wYr6YglasYmiS8KpIeF7ik71x1MIXqO9ryNoUXTFWATXK16qH/4bc/AADvCiAxDcruiy8OOQcIpilb6E4Ofa2wFLsRQ7KdbUAMxGcKBiZe/GDMzAMC/4CIIfKros3BsS9lWs0rZYjFbsqb0fIzhH0RVnIZis6Mhg/AEPYhAuQPBhRZcMZbOvMfUu7guNitWahOBb2tsbwTPYTLGmBmE5gtcqOtIL38cjuBvBqxVddSSCGxRrZA+0YiG21t7vEHxc8VKD8BvsoWP3IbhV0ZE+aMK1WI7l2FHRVacj+C/FGpuC4AvaeyOCh9Go+Id6XI3gZzp2HYJbFP+nL96KH+MZBEEbghnYTdEVP0MwWrHGDkPwBPpZUR3uQHCC4h9OQ/AkXq69gxAEX9Wz9UUTWvAMgiCYjmbsjz8ieBqvUayphxAMU3TJjQjer733IrgVdXq2V2IJ2vAm7fXFbQhu1DP1RRNa8AyCIJiOZuxuRQMwBcFCvEmxOtsieBb1ii55J4K7UW9FfTALweF6rgG4C8F5OvZtBNPRX8/RD01owbMIgmA6mrGbVWvAdxAsxwcVq/ImBL9XdFkD7kfQpL3PIbhCz/V9BHegn/begDY8h33Uvn5oQgueRRAE09GM3XTdOATBeNQpOtKM4BzFWvkYgmu1tyXmow3D9TzHIliMV2jvZXgcwalqVz80oQXzEQTBdDRjV+vuZCxF8N9oVKzsSgTHK9bKJpiL4ADtnY/g+3qWHTAbwYe1V4+rEfwGdWpLPzShBfMRBMF0NGMX3e8oPIvgf7CJ4qWeQDBEsdbORnCJ9oZgOZ7DdnqGelyD4Feo095pCJ7Ey9WG/mhCCxYgCFoxFeMw1Pr3ajyB4CZsq/iHwQieRp1irW2PJViOodr7KYIv6xk+i+BxvEx7r8QStKFJdeuPJrRgAYKgFVMxFtvb8IbiHgQPYHfFcQh+rVhnFyD4hvZejeBpDFTbXoWlaMWR2huAuxCcpzr1RxNasABB0IqpGItBNr6t8EcEs3Gwnm08gi8p1tm/oA0LsJX2piL4iNo1EPcgOEfHvo/gDvRTPTbHGEzBcwiCVkzFWAxSeQbgCgQL8CY91zUImhTd4ioEp2vvXxE8gAa1qQXBX9Bbe8ciWIxXqHybYwymYAmCoBVTMRbbqXwN+C6C5fiAnqcOcxFsp+gWRyN4FL2tqB53IXib2nM8ggXYU3s7YDaCD6tcQzAJv8YSBEErpmIstlOdxiEIxutZ9kDwiKJb3YLgJO19GMFNasuOmIPgfdqrxzUIfoU6lekTCIJgGa7GKdhGbXg3liH4IRr1DO9C8AtFtzoJwe2os6L+eArBa9SGXvgjgp/p2GcRPI6XqVytCObhW3i52nQ0nkVwFTZR+y5H8DlFt2rEQwhep70zEPxcbTgDwSPYSnuvwlK04RiV6xAErXqGV+MJBDdhW7VnR3wOzyIIPqnoduMQ/I/2tsUitGJP1e01WI5WjNLeQNyD4ByV7UQEf9VzDMW9CO7H7qrfzvgk/ow2BEFwB67HloputSmeQbCP9r6H4Nuq12aYieArOtaC4C/orbKdg6BZz/IyTEMwGwepPjthLKaiDUGwCFPwWWzrBefhCYxSdKtvILhAe3ugFQuxtep0EYKb0ai94xEswJ4q3+8RvFHPMwBXIFiAN6p8gzEWU9GGIFiEKRiDgTo2EbNxPhoU3WIwlmEpdtTeLxF8QfU5GcF87K69HTEHwftUvno8g+DleqYGfA/Bcpyi8uyMsZiKNgTBQkzBGAywenWYjCX4M3ZUdIuLEZytvdcieAL9VI9d8AyCMdrrhT8i+LnqMAzBQ3q2OjQjCMbb+HbGWExFG4JgIaZgDAbougb8Cq2YgTGKdbYfgmewmfb+jOD9qkMv3IBgso41I3gEW6kOYxD8TPEP78EyBD9ALxvWEIzFVARBsBBTMAYDrLveuAbBPPwE/RXr5FoEH9PeOxDcjXqV76sIHsIW2nsNlqMVo1SP/0JwuuL/vBkLEfwS/a1fQzAWUxEEwVy0oAl9dL9NcDOCNvwN+yrWWhOCh9FoRQ24H0GTynYolqMVr9XeZpiJ4Cuqyw0IjlC81P54EsGN2Fb3GoqxmIogCOaiBU3obf3bGrciCB7GGYq1UofpCN6pvVMRXKtybYEHEXxRx36M4GY0qh6NWIQ2bK5Y2S64F8H92M26GY5mTEMQBHPQgib0tuHthHsQBAvwG2yh6LL3I5imvU0wF63YVWX6CYKpaNDeyQjmY3fVZV8E9yg683JMQ/A49tM1w9GM6QiCYA5a0ITeNr5huB9BENyBIxVd0gePIThce2/BrirTKQjmYWftDcUzCMaoPqcg+LFiVQbgSgQLcIxVG45m3IkgCJ5GC5rQW+XZHzMRBMEsnId6xRr7PIIrVI9dMR/BCdrrhRsQXKo6TUJwqmJ1euF7CJbh/VY0HM24C0EQPI0WNKFR5XsTHkYQBEswFTso1siWWIA27KXyNeImBD/Usa8ieAhbqE63IHiNYk3UoRlBG76Dr+JeBEHwBL6LI9Cg+ozGYwiCILgP71KskW8hmKTy7Yy7cR820d6hWI5WvFZ16oulWI4Biq74MJZjLoJgNlrQhEbV71TMQRAEwVz8CH0UqzQUy/EctlP5BmB37W2OBxF8UfU6CMFtirVxLYJ5OBYNas+X8SyCIAjacCv2UqzSzxBchX/DIdgN/VWPSxBMRS/V66MIvq9YGzMQfAlzcZza9B0sQhAEQfAQmhWdeh9mIQiCIFiM+zEVkzEB4zAGR2I4Btm4TkEwDzurbj9C8EFFV22JNixEL3wcs/FD9FZb6nAxliAIgiBYiF9jc0U7lyC4CT/FVDyAxQiCIAiCIAiCBbgb1+EinItP4F04HMOwqe63K+YjOEH1uxvBfoquOhrBH73obCzArRimtjTgSrQiCIIgCO7GKMU/bY+lWIodtNcPQzESx2MsxqMFV2M65iEIgiAIgiAIFmMWpmEKJqIZp6AJ+2EQ6qxeI25E8N+q36ZoxXPoo+iqzyI4z4omYhEexFi1pTd+jyAIgiAIZuE81CuMR3ChdbMZhuFwvAufxDdwEa7D3ViAIAiCIAiCIFiMBzAVl2ICPo0xOBoj8E0E92NT1e9wBDcq1sYvEJxoRXW4FMuxAL/C5mrHQNyIIAiCIAiW4Dpsqwfrj9kI9rdh9MNQjEQTTkEzJmIKpmEWgiAIgiAIgnlYhv3Vhk8h+KZibTyCYHftNeBXaEVwNw5XO7bCrQiCIAiC4CHsowf7MIKpKk9/7IZD8A6cinPQgmvwAFpxl9pxKYKTFF31cgTzUK9jvXENguAxTEC92rADpiMIgiB4Am/Xg9XhTgTHqT6bYDmWop/a8HcEwxVd9WYEv7Vqm+BmBMESTMV2asOemIEgCObgVD3cMQj+jl6q020IDlb9tkEwHw2KrvoygvFWb2vciiAI7sbb1YZX4+8IFuIcHdsWn8NVmIbrcTZ28qIP4hfYVscOxS9wmAp3FYJPql4TEXxc9TsGwXWKtfEbBG+zZnbC3QiC4Cn8EL1Vv2PwKH6sY0fhWQR/w6X4PZZgPo7wgokIhujYiQhOUsGGow0LsaXq9R4EP1H9voDgPxVr40kEO1lzw3AfgiBYjhuxh+r3L2jQ3s54BvPxeisaiutwiBdMRDBEx05EcJIK9j0E56tueyF4UPWbguDfFF01BMGTuu4QzEQQBMHfMVZtmoDg363eRARDdOxEBCepUFtiIdqwh+pWhzkItlfdZiEYquiqtyO4wtp5Ex5GEATBAlyOgWrLfViGgVZvIoIhOnYigpNUqM8i+KXacBWCY1WvHRE8jTpFV30NQbO1dzKeRBAEQXAnDlIbeqMND1ozExGMxlE4CkfhKByFsxCcpAI14mEER6gNZyA4W/U6FsFVirVxLYI3Wjcfx1wEQRAEszAB9arbVghusGYmIgiCIAiCIDhJBToRwe2oUxuOQXCd6vVVBF9RdFU9nkHwMutuPJ5FEARBsART8XLVawCCu6yZiQhehxEYgREYgREYh+AkFehGBO9VO7ZEGxahUXW6GsFbFF21F4IHdZ+JWIQgCIIguBfHq16zsRB1Vm8igiE6diKCk1SWNxxIXRueRF+15R4Er1R96jAHwSBFV52E4Ke6Tx0mYxmCIAiC4Cn8EL1Vn18gONTqTUQwRMdORHCSypLJPHc/p39C7bkAwYdVn90QzFKsjfMRjNO9GvArtCIIgiAIluHP2F11eR2Cv2AT7dV70UQEQ3TsRAQnaW+gjSODyTKyhGyn9nwYwQWqzwkILlOsjT8jGKX79cX1CIIgCIJgPj6t+nwLwX0Yi8PxFjTj79jTCyYiGKJjJyI4yYsOx72YjafxORtWvkZCLlCbXongHtXnGwg+p+iqRixCGza3fmyCmxEEQRAsxYWqUx0+jJkIgmApLsUeXjARwRAdOxHBSV5Qj99hPy/YFYuxrw0j/cnTJOTValMvLEAbtlZd/oDgdYqueiWCe6xfW+NWBEHQhitRr/rtgP2wE3pZUV9shjoda8RmaNSx3ngGh9gw8hEScp3adh2CY1SPBixAG7ZSdNUHEFxo/dsBdyIIrkcfL/oqvqJzJ+N72EzPsCP+HVfh/6HO+pc6cjcJOVZtOxvBGarHvyC4X7E2JiEYa8MYgRn4Kza3opmYoXMXIBikZxiKZlyNy9Hf+pcmEjKTNKhtxyK4SvV4D4JLFGvjVgQH23D2w47am4kZOncBgkF6ljrcjvdZ//JbEvIxtW87BPNQrzp8B8EnFV3VD0uxHANsfDMxQ+cuQDBI7dvHim7EqdavjCBt5FmymZ7hQQR7qXyD8DCCJkVXHYzgVpVhJmbo3AUIBqltvfE3XIZP4EI8hkHWr3yfhJyn5/gJgveoXI0Yi2cQLMPdGKzoirEIJqkMM/EQ9sbe2Bt7Y2/sjV8iGKT29cNJ+Co+gm2sX9mGLCKtZBc9x8cRTFSZmnAfguAK3IHgMeyrWFMXIviAyjATQRAEQRAEwSBFd8vnSchlepaDEdymsuyGKxAEd+P1XjAQv0YwH69XrIl7ELxSZZiJR3E4DsfhOByH43BchWCQojulkTxCQg7Xs/TBc2jFpja+AWjGcwjmYhx6e9F49MaPESzBiYpV2QytWIzeKsNMzNC5CxAMUnSnjCYht5M6Pc+NCEbZeOowBo8haEULttXerl5Qh2YEbWhWdGYUgj+rHDMxQ+cuQDBI0Z1yEwl5t55pAoLP2Dj2wx8RBDfhQGvuP9CK4L9Qr1jZOATnqxwzMUPnLkAwSNFdcigJeYL01TOdgOByG9ZWmIDlCB7FGNRZtX2xuxX9KxYh+AX6KV7qpwjGqBwzMUPnLkAwSNFd8k4ym5yh5xqK4AkbRiPGYh6CpZiATa2Z7+P92jsITyG4AVsr/s+DCPZSOWZihs5dgGCQojulP9lUz/Y4gqHWr1G4A0FwNYbpPnvhQQTTsZNiGwTz0aByDMZOOrctdkWDnivHkUvI7jqU4eQS8mbPSwOZTCaTIdpJXzKZfFTPdjmCE6wfu2AyguBevNH6sR1uQTAL++jZ3ojgWkW1STMJOViHMoqEnO55aSQhIb/WTgaSkAv1bJ9BMEH36o9mLEawAM3oY+19Hr/D/jq3Ca5CMB+v03M1I/iaotqkmYQcrEMZRUJO97w0kpBnSMhxVpCBJORCPdsoBDfqPk34O4I2tODl1t1hGIXNrVofXILgOb79Vj3TFQjerqg2aSYhB+tQRpGQ0z0vjSTkIjKdPEI29U8ZSEIu1LNtguVYin7WzT64HkEwDQfbOOrQzNeuI22kWc/zOIIhimqTZhJysA5lFAk53fPSSEJayJEk5Dz/lIEk5ELFbQgOtna2xAQsRzAbY1Gvew3EXjjCGmv9GGklId8g9XqGfRDMRZ2i2qSZhHyIHEoOJYeSQ8mh5FQScrrnpZGEtHheppDlZD/Py0AScqFiIoKP65p6jMFTCJZiAjazfvwId+J/0GCN5ViymIT8nPRT+76G4ClFNUozCQkJCQkJCQkJOd3z0khCWjwvg8lCMo00kIEk5ELFexD8xJo7DLchCH6L4SpWDiNzScifyFZq01CMxbMIpiqqUZpJyLvJfmQ/sh/Zj+xHPkBCTve8NJKQFv+UL5CQD5KBJORCxV4IHrR6O6AFbQhm4HhVIcPJgyRkOtlJbRiBZkxHEAQLsJeiGqWZhBysQxlFQk73vDSSkBb/lL7kXvIU2ZGEXKiowxwE2+tYP4zDfAQL0Yy+NpxjcT4uxwRrJYPILSRkFtlHdRqOZkxHEARz0IK3YYCiWqWZhBysQxlFQk73vDSSkBYryNEk5Dsk5ELFP1yF4FjtNeEBBMEUDLbhvQX/gTdjuLWWzcm1JORZcrTqMBzNuBNBEDyNFjSht6IWpJmEHKxDGUVCTve8NJKQFu3kUrKMhFyo+IczEJztRXvg1wiCv+IQNSG9yUUkZAl5p8o0HM24C0EQPI0WNKFRUWvSTEIO1qGMIiGne14aSUiLdrIDmU9CLvS87Er66LmOQXAdNsd4LEHwNMaiwcbXgO1xEHa2TlJHziYhbaRZZRiOZtyNIAhmowVNaFTUsjSTkIN1KKNIyOmel0YS0qJDOY2EXEh2IA+RP5Gt9Exbog1L8ASCZZiIrVWGM7EEj+IGHK9bZCxpJSETSL0NLsNJM2138rLZCILZaEETGhU9RQaQbUkvHUoj2Zb090/ZggzQodSTLcgAMpw8TEJuJzvqeUZiEZYj+B1GqCwD0Mt6kbeRxSTkZ6Sv9S6vJmeTB0hISDj7CnwTr0WDouh+GURuISGzyD56hu3xY7Qh+CWO0yPlcDKPhFxF+pMjyShSp50MIEeSXa2xDCfN5F4SEhLyFGkhTaSXolj/sjm5loQ8S45WuxoxFs8iWITxGKhyvQIfwVlowbXYTbfKcPIgGU2GkpCQk7STYSTkLKuU4aSZ3EdCQkKeJC2kifRSFBteepOLSMgS8k6150jciSCYgiFesCU2UZmOw7fwGYzGYRio22WA52UoCQl5kmxlBRlGQs7SToaTZnIfCQkJeZhMICNJvaLY+FJHziYhbaRZbdgNVyII7sLrrGh/HKz4XxlKQn5OlpFJVpBhJOQsz8tw0kxmkJCQkIfIBDKS1CuKypSxpJWETCD1qtMANOM5BHMxFr1Ur80wHIdabzKUhJxJJpE2MtI/ZRgJOYvsRkJCQv5Ovk4OJHWKojrkbWQxCfkZ6at61GEMHkPQihZsqzqdgOmYj2cxHT+13mQoCTmTbEvmkjtIo+dlGAk5y/NyOfkaOYDUKYrqlMPIXBLye7K5yrcf/ogguBEHWDOX40iVZxD2wqY2iAwlIWd6XsaSkHGel2Ek5CxFUVsynDxEQu4gO6lMW2ECWhE8ijGos+Z2RR89XoaSkDM9L73ILWQh2YkMIyFnKYrak0HkVhLyKNlH5WjEWMxDsBQTsInasTUOxxh8Ft/GL9FsvchQEnKmf8r+pJVcQoaRkLMURW3KFuQ6EjKXn4+08R2BOxAEU7CLtbcLPos9VZa34vdowVfx72jC7taLDCUhZ1pBvk/ayPtJyFmKonalD7mYX9yCZ/EOG8eumIwguAfHWHcH4BzsqkfLUBJyphVkazKbzCIhZymK2pZ6+n0NQStOteH0RzMWI1iAZvTRs/TCjngNBul2GUpCztROTiEhIWcpih5iLFoRTEC99asJDyJoQwtepvvVYRi2VDkOwE9xAx7FEjyMP+Io3S5DSciZ2kk9+RMJOUtR9CBvw2IEP0Vf3W9f/AFBcDMOsv7ci/vwWpVjMI7DQdgeDdarbE7GkUN1KMPIOPJaRdHDHI55CH6HzXSPLTEByxE8hlNQb/0aqPhfOYL0UxRFOyPwEII7sKO11wun4CkESzEBm+q5PoH36Nzx+Bx66RYZRJaQx0h/RVG0Mwi3IXgUe+u6w/E3BMFvMdyGdSB+gDtxrMowB9N07jIE/XWLnElCLlEURae2wHUI5uBQa2YHtCAI7sPxNo798QG8Ag0qwxxM07nLEPS3ztKPPEVCDlQUxSr1wSUInsM7dK4fxmE+goVoRl/FS83BNJ27DEF/6yynkJCbFUWxRurwNQRtOF17TZiJoA2TsZPKsA3ehC/jVTa+OZimc5ch6G+d5TYS8g5FUXTJ/QiCCajHMbgKQfBXjFQ56vEwfoMzsLuNbw5uwRbYAltgC2yBLXAlgv7WSY4mIY+QRkVRdMn9CJYieAZBECxEvWJ15iAIgiAIgiDob53kVyRknKIoumwhgjdiCYLgDgR3qGy9sC9ebuOag5k4GSfjZJyMk3Ey/oqgv7WW3UkrWUi2UhRFl2yOYL4XvA5fxFvwOgRXq0z/iuvwLO7AkTauOZimc5ch6G+t5dsk5NuKouiyYQju0d7JCFpUpr1xJDZVGeZgms5dhqC/tZItyALSRoYpiqLLRiG4VnufQTBesSbmYJrOXYagv7WScSTkV4qiWCvvQnCR9s5HMFZlasCBGIuLMBNjbDxzME3nLkPQX5elF3mQhLxOURRr5TQEX9feTxG8XWXqi5vwLYzBHqiz8czBNJ27DEF/XZZ3kJC7SZ2iKNbKuQg+qb0/IRipWBOH4FU69y8YhXpdlhtIyCmKolhrFyM4QXszEeyi8u2A4/B1HKqm5FUk5GkyQFEUa+06BIdbUR0WIxigcn0Uj+BxXI5PY1c1JReTkDMVRbFO7kWwpxVtiWCeyrYbhqhdO3Dg77n9XrKDoijWyXwEm1rRCAR3qi59cTAGqw3jEfxYURTrZBMEC7V3FIJrVLb+OAETcCMW4ma8XvXrj9kIDlAUxTrZA8F92huD4Ecq22a4FJ/ASPRTOz6EYKqiKNbZYQiu197pCM5RvXqpXnW4E8HxiqJYZ+9E8BPtTUDwMdVhAF6LcfgFZuEDqtcbEDyIXoqiWGefQPAN7U1G8A6V71wswB9xLv4NO6luv0FwmqIousV/IviU9qYiOFTlexl6qx17oA0LsaWiKNbdL/naZH7/Ud6uvfsR7Kb67I7R+CbeqPpMRPBNRVF0j/C7kHCklSzn7/O562w2Ufm2xedxBWbj77gYp2IX1WVLLEAb9lQURfcId4eEvbxE2DwkPKs6bIvxeCu2U90+g+AKRVF0n/BMSNjCS4S9QsLdqlMdtkO96tKIhxEcqSiK7hH6h4TFVhKOCAm/V522QxDMwXRcjRaMx1gcj5EYikaV4QQEd6BOURTdI+waEh6wkjA6JPxYdRqGxxEEQRAEQRAErZiFv+IKfB9n4EN4Mw7A9mi0fv0ZwfsURdF9wqEhYaqVhE+FhP9U/bbAcByJMRiHCZiMqbgfyxAEQRAEQRAEczAdV6MFEzAOY3AkhmOgrjsYwVPopyiK7hP+LSRcaiXhGyHhE3qOLTAcR2IMxmECJmMq7scyBEEQBEEQBMFi3I+pmIwJGIcxOBLDsYkXTUbwZUVRdK/wsZAwwUrCJSHhBMVLNWA7vBJvwvvxRXwHl+NGPIJlCIIgCIIgCIJFeA7BMgxSFEX3CueEhNOtJFwfEg5TrK0tMBxHYgzGYQImYyqmYwGCILheURTdL/woJJxkJeG+kLCHYn3bHcfiOEVRrB/htyHhaCsJC0LCJoqiKKpduDMkjPASYdOQsEBRFEUtCHNDwlZeIuwZEu5VFEVR7UK/kLAk1HmJcHhIuE5RFEW1C0NDwkwrCSeGhIsVRVFUuzAyJPzJSsInQ8K5iqIoql04PiT8zErC10PCaYqiKKpdGBsSzreScFFIeJeiKIpqF8aHhM9YSbg2JIxSFEVR7UL/sFvY1krCf4fpYXdFURS1JDSEBkVRFLUoDA7fDQ+FhISZ4VthB0VRFLUgHBDmhKXhR+Gj4aPhkrA8PBVeqSiKopqFAeGhMD/sbyXhsPBcmBH6KIqiqFbhfSHhszoRxoeEExVFUVSr8JOQMFwnwt4h4b8VRVFUq/CXkDBQJ0LvkPBHRVEU1SrcHRZbjbA03KYoiqJahZtCwmY6EfqFhOsVRVFUq/CjkLCPToT9Q8JERVEU1SqcGBK+ohNhQkh4q6IoimoV+oR7w6JwqJWE14Wl4bbQoCiKopqFfcITYXmYHD4ePhF+HlrDI2FPRVEUtSBsF84LM8LysCzcG74WtlYURVGLQp2iKIou+P8A7arR3GAC4GEAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTg6MTE6NTcrMDA6MDBAPZxKAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE4OjExOjU3KzAwOjAwMWAk9gAAAv96VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAASIl9VstuGzEMvPsr9ANZiA89eOghidOkKOoAbdp/6L3/j87IjnaDCl1bxK48Sw05JJNT4vX9/PX3nzQvPZ9OKeX/fCMi/bKc8+lb4k16eHr+ckmPb/cP7zuPrz8vbz+SabKKd/D5iL1/e/32viPpMZXNcu2a051suUd4T3nL49pfVQB9k15VJN3h99BO9/8ADUDdWlXrA1iqt7IC+gB6CakA6pbNWo8FsKRLAjMrZgNYcmmSF8AKj3lzM8uR7mzrLUqsgmkAMtgS1pTIZlKiLJD9irQWvVUerhWRrcIJIrHdi7bgOwW30RZIcCdPlRZ+zaUFsrRCUh7ZqktrMkJTW+ZSdADDPUJ4k8WWuRTKY5vVTsEVgSGpq1yKp1cI7j2cTwBWWUdTRjRdnYLr1qOXrCtghUfZRFvFtoNDK7bKuTQAWTnBeFgjWkuXFfImT9MMLRGXQ5tYZjJuyJxvddlz7m0VkOarkl1Lr0w2st91dbzK1am7Z3QbvHcvayT1QfUEgoYEEMi06IqoUiDWrogqaxf4rkuefkVKoH2VjGvR3pZO2UIs80BR+mg2rWjRFbRemdbmDl94KaOT20onHTpBcVVHJu98K1JLWUI7obaV4mhKCKURqktk3M7v2dAT9NkCSVkMmpxe4AmFzJpnw1WMp1XRY2y8cLtnxTigDKgsW+kEFYmEiBxKUFbDly6fLucPc/Q6WR9eL+d9sqIbOF8/P3+SfYpy0/ZZKVi+T0TBKvvcE6y6TzfBavsME0ynNvxPh31sxj6ThOs4eWSYSUhIk0YPo0RpZDplwQ4ziQqZEjO5YgrwEU1+aHcZO5OxkDJNP/Qv+cokjDZ1Gj12o9PonkMmCUYnZXSX0+ikjIJxGp2UlZRhdFJW5hdGJ2XUvg4zKSsp0/OkrKQMo5OzMsvIyKRzFV8OMsvQYZ5sowxqmk5t0PVDIsxHafCv+bF+rAxPJh9lt3o7UT/CWaXHmuTz+38KuD/9BfEfk+4im/wdAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAGielRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAACiRJVK7juMwDPyVK21AEfh+bLDAAr4i1aa6Kkjlj9hmP/5IuZI0nhkOSb8e79fx9fVGOr75ONZdtmP7fO7fp57n9jz28zxV9vWJt9fjvTftjdf14hbr83gW/HjT8ed34xlBmeOGUw3Dx52mG3GMGxQirtaQaKKNG01g9hx3rIsyN6KgjuMOU5gZyqksPUtVlqDJ3ogzai6o5BGtIzOSgmiaiywWVF1fUBBJsWQqWidoi1RYQiDzC8JksA5qSuGysEAkHjAdOegyS7ZKiHWS0iKpSoXgWZ0XeWUIYBtdz5NWUBEBLpWHLBVUKA2z8hb0IFwsB7hmFQDhvngQSh62Zgp13hsCypCOn5nCjVGVEmwtcNaoucdq5e1dgol1SZUQreMLZY2pOClSG6sTkLMpQcKBo8aWoc1A8m6m+lZekTRbVAwh07iSE9TwuBC2cuFi169QFHbmak6mRCftlRn1G8PoypsU3DY6awEl6lVHpo59/Pz7qMcgnKSDYbL+/P2wqQOjOv79D1eTk4zBQmgiAAAAAElFTkSuQmCC) |
관련 화합물
힐 시스템의 공식은 C22H26N2O5
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |