몰 질량 of Tryptophan (C11H12N2O2) is 204.2252 g/mol
C11H12N2O2 중량과 몰 사이의 변환
다음 물질의 원소 조성 C11H12N2O2
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 11 | 64.6922 | 수소 | H | 1.00794 | 12 | 5.9225 | 질소 | N | 14.0067 | 2 | 13.7169 | 산소 | O | 15.9994 | 2 | 15.6684 |
몰질량을 단계별로 계산하기 |
---|
먼저 C11H12N2O2에 있는 각 원자의 수를 계산합니다.
C: 11, H: 12, N: 2, O: 2
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C11H12N2O2) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
11 * 12.0107 + 12 * 1.00794 + 2 * 14.0067 + 2 * 15.9994 =
204.2252 g/mol
|
화학 구조 |
---|
![C11H12N2O2 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAACSCAYAAAA3ph0SAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYESwp8a8pbgAAAAZiS0dEAP8A/wD/oL2nkwAAGW9JREFUeNrtnXucVlXVx78zMNxFbl4xFQSU8AqFV5IUEVO8IaZmGBakmBFikpmKFxI1e0MxJFHfF+8jakWaiWmkCRqlgb6agpR3QbmZiCCz+mOvwznzcM55Zp55ZuZc1vfzeT4ws/bzzJx19v7NPnutvTbkCIFuAmMEpgvcKXCjwJkCHTAMw8iY4H1LYJ2ACHwosDTw9QcCx5iXDMPIiuCdLFAj8IbAVwUq9PstBU4RWCWwUeBA85ZhGGkXvCqBtwQ+EegV0WawiuJC85hhGGkXvaH6CHtHkXZ/1nZ9zGuGYaRZ9C5VMRtdpN0V2u5M85phGGkWvZtUzI4u0u672m6iec0wjDSL3vQ6it4YbfdD85phGGkWvckqZt+s42PwWeY1wzDSLHrHq5hNL9LuUW23j3nNMIw0i147zcP7SKBrRJu9BDYJvOTl8BmGYaRZ+MbrLG6+wE4Ftt4C/6/248xbhlF2WgJ7AVcC8/V1srmlcUWvQuDnKmzrBR7TvbdP6U6MTQLfN08ZRoPZGRgCjAdmAs8An7hhuNXrdHNX44vfwQIzBZ7XvbcLBP5HoK95xzDqRRfgcGAccIuK2+oIcasB3gD+CjwLvK/f/xTobq40DCNJtAL6ASOBycBcYJkKWZjArVIBnKmzvcOAbQo+s4OKoACLgHbm5vLP8IYKzAt7hBXYT2CSwJHmKSPHtAR6AsOBScBs4GXg8whx+0zts7X9cH1/XekKLNXPqsYCiGUXvXN0PW9GiO18td1knjJyQn3W3TbpzG6uzvRG6syvsgy/R19gjf6cS+22lFf0LlBh+3mI7SK1XWueMjJGJ328HAtMA+YBKyLETYB3tc00YBQwAGjTyL/jMJ1N1gCn2S0rn+j9RIXt6hCbt2NjsnnKSCnb6uxrFDCV8qy7NSUT9fdaDwy021ke0ZuiwnZJiO1atU0yTxkpogr4P2BjzMxtHbAA+BVuPfsIYLtm+n1bA1epQIcxMzDb3MVub8NFz8vRmxBi86qwnG+eMlLETwsE7m0aZ92tXNyqv+djuKBJmIg/qW3+hkV0Gyx6t6iwnRNim6W275injBTxtgrEX1IiELvh5+dNi2jTFXhd28zBIroNEr3ZKmyjQmz3qO0M85SREjrrY20NsH+Kfu9DgA0qaudGtOmLn+R8ud3q0kXvARW2kSG2h9V2onnKSAnnqig8msLffZT+7huJzo09GpcqU4NtVStZ9B5RYTs2xPaHuhQZNYwE8Szp3rs6VX//j4DeEW0m4G9Vs4huCaL3pArbV0Ns3oFAg8xTRgropTOgtaR3sb8S+LWK2qv6uB7GLVhEt2TRW6jCdlCIbZHavmSeMlLAlSoEt4XYdsBFR7+eguvoALyo1/I40RHdP2qbvwPt7fbXXfQWq7DtG2Lzaul90TxlJJwKXNKxAIND7Beo7aGUXE8wohu1DbQL8Jq2eRCL6NZZ9F5XYesVYluuth7mKSPhHK6D/1+E5+C9oPaTUnRNB+NHdMdFtNkLP6I72bpB3UTvHRW27iG2D9S2g3nKSDizdOBfFWLrhx8caJ2y6zoVt065CVcIIYyh+BFdSy+rg+itVmHrHGJbp7ZtzFNGgmkTmO3sFWK/Xm3TU3p93g6TVUCfiDbj8SO6B1mXiBe9DSpsbUJsm9TW0jxlJJjTdMAvCLFVAm+p/cCUXl8FcL9ewzKgW0S7GdrmPeAL1i3CBa9SRW1z4UlnAq3UttE8ZSScR4he9zpaba+R7oX+triS8oI7PKhVSJsq4Aksohsreh1U2P4TYuuktjXmKSPBbI9bz/osYgZ0l4rAJRm41p3x9xXPimhTGNGttC5SW9i2V2FbEWLbSW3vmaeMBBOXitIB+Bi3wJ+VDIQB+JWcz4tosydu/S8qsJNfDoNdvwcLxsPvCm1XQY9nYf7T8LB5ykgwcakoo9X2VMaueaQK+efA1yLaHIUf0f2GdROfvtopXgmx7a22JeYmI6EUS0XxatCdncFrv1qvba36IYzzsYjuVvTHL0xYyEC1PW9uMhJKXCrKrsBmXJn1bTN47RXAfRSP6N6MRXQLn3AR3JkAhXgZ7n8yNxkJpBJ/UT8sFeUStd2dYR+01UlJXES3JX5E9wUsostQ/E3NhRyjtt/b+DISyDDiU1FeUfuwjPshGNG9LaJNZ+Cf+AGfXEd0T1BH/CbENgI/7G0YSeNuolNRDlTb++QjsT4Y0Y06zyYY0Z2S545zujrh3hDbmWq7y8aXkTCKpaJM1757fY58EozoHhvR5iu4fEbR8Z1Lzo6ZFo9V269sjBkJw0tFeTLEVgWsVPu+OfOLV09wLS77Ioxv40d0D85j5/ke0dEvbwPzL2yMGQnDS0UZHWI7EX/RPm9U6FObAG8QfY6vNxNeCfTMm5N+qBd/XYjtYrVdY2PMSBDFUlEe1H57QU790xZ4Tn3wZ8Ijui3w9yu/DHTMk4Mu1wu/ImaqfJmNMyNBxKWidMEV3dwE7JhjH+2EX1nm9og2HYGX8NNdqvLiHO/kpR+F2H6mtgttnBkJIi4VZZzaHjE30R8/ojs+ok1PYB3RZbkyyY16wd8PsXmZ3OdZ/zESQrFUlAVqP81cBcAp+BHd4yLaTFSfCdFR30xxq17smBDbHUQvFhtGcxCXitKb9B//2BhMVp+tIfqoSG9GeEUeHOIleIZVYbjP/moaCaIV8akoVxFfZy6vVOg4nxxh3y8w09s1Dw55iOiyPL9V2/HWb4wEEJeKUoFL0RDcnnGj7nhZGs/k5YIfI3pReJ7ahli/MBJAXCrKYOKPfzSiWaK+OyYvFzxfL/gruMOFz8cVIQD4i9oOtX5hNDPFUlFu0756pbmqXnyZfO1RBvyDRm7ALQB7z/Z/Axbr/w+wvmE0M3GpKG1xi/SC21Rv1J0bA+M/F1QB7waETnAHBHn/30j0OaKG0ZTEpaJ4RTOeNTfVe/yvUN/tn/WLrcBVZHitYGY3PNCJlgRsjxMd6jZqcwrwLXK2raeRKZaK8qj203PNVfXCKyv3UtYvdIgKnCdor6gAFhZhrMRVWfGytdfgsrptkTicw4B3An79jOgseKN+xKWi7IB//GNXc1W9mEPGd1wdjDsRyhuUb6qoFVu83DngHMEFN/a2/rKFHsBs3AZ4wc9+9/4/C7cIb5T+VBKXiuLtJphjrqoXnXGBoc1A96xdXD+gOiBaHwKTgDb1/JzhKpTeWt808l1rvxtu3/KGgE8eUn93UJ9/in9S11jCS5ob8QwmPhXlRbWfYK6qF+eSwaMgdgNmBmYdH+sgbcipUNuq2HmfuQw/vSUvbKN/NLxI92YVuD1C2vbCz3X0zl616GL9iEtF2TvwR6WVuapePKu+OyMLF7N9wQzkMxW/Hcr4M/oDiwKDuVp/bpZph1uj+yBw3fNwW3iKMRI/SrYetx3IBmlx2hCfiuJVAbrJXFUvepGFPcoCXa51M5D12hE24YoJNFbUtaWKwMf681Zl9BGuSq8rGKR4BhhUz8/pon98avQzFpPTUt31IC4VpQV+utVAc1W9uIL4k9MSL3btBSYJrK6BNV3dVL8a6NNEv0JP/K1sXqXWvhnoGGFpPc/jp/WUyuH49eBqcEEQC3SEE5eK0g5XTHSuuane/XqZ+nVw2sSulcD5Au8LiL4eu7v5kgxHBh79NuojduuUdowhwN8pntbTkMe2yYEliPeAUTYet/BFXOmolfrEsr25pGx8Rfvcv0lL+plApcBIgaUBsVsocEQCfr1OuECHl77xOnBkijpEqWk9pdIH/4AbAX6HC0DlkQ64mo5/DfjDC5jZml358OpnXp0WwRsi8EJA7F5WAUzaOtphuMNGgo9w3RLs2nKl9ZT6uDFKf6bgijlOwq1Z5WVWNxW3LOP5fw1u/XNUYDY8zvSqLE8Yq0nD1lKBQwXmB8Tu3wJjJdkDo0oHb2GuWpJojLSeUtlR/zh4A/9FsrtA30aXC4LpPILLCBhL7YjiN/EDc1birGGcpr5cmGSx20egOiB2KzVokaa1siTmqjVFWk+pfA1Yjp8DOBOXG5gF+sbM6uIO5b4GP0OgD0apeEc+nldMeHoKHCUx+/oEjhQ4KMbeQ+BUnZ2dIUWimwJ7qtjVqNitE5gq6d3E7j3CNXeuWhcddOupnVjcI2H+aqf+8arcvAOMyOisrn0d+8/9+r5XcVuojPr/off2KHcrJnqTVXiOiWmzUdzjSJjYPR6YqQVfz0lBpFVgF4GZApu0zScC0yQ70avmylVrr4/a3npGDU2b1lMq++mjiCcUc4EvZGBWt18Jn9cWP8gxH0vuri8T1HcP1eURsyTRE+gu8K7A5wI3CPQX2F4fWa8Q+FRncPtq+931e6KfN0PcZv8s0lS5al5icbBm4DxgQIp85VW7WUvtajdJXM8tx6wujp2Bt7HDf0rBS8E6qTFFb46+b0zEe47Xx9fnA997RB9re+fgJrSl8XLVKnXwLQ0MvIUkI62nIQP+AWrXP0yKeO+ls7oPA7/fWp3VlTtv9Ev4xxXaecx1ox9+MLF4PKAU0RPYSWd4S4p89h/0swfo1y1zeEPKnas2BL/yhuBSZ8qZWNzcDMcllnoRzWm4HLempnVgVlfTCLO6OEbil/D6mmlaUa7TezO9Tq1LFL0R+p7ri3z297XdhJzflHLkqh2Kf8iRl3E+lmzmu7XXmZWXavMGcHQT/ew9m3BWF8fVgZ/dz3Qt9qnnLfXVgfUVvacFHoh41RSI3g/0PeOKfPax2u7ndm+A0nLV9qF2YvFKFczWOfDXAdTewdBY1W6KzeqaY6ZZgX8Y/TKSnfzenBytPnqtzk87AdFbLrA44lUoej/S93y7yGcP0Xa/tHtTi7rkqu2pg9wbhOt0BpK3sykKq92spnxl/b1Z3cqQWV0STshri1sTt4huNHepf35S53eU+Hh7rr5nYpHPHqntfmr3ZisKc9XW4vw0UGc3mwKPwtOwTek98KuSCPA0botXFmZ1cQQjurfZsKlFB/1jWEN9clFLFL1B+p47i3z2FG13ut2f2Ee4l6idAuFtRv8l2U3rKZXhARHwqt3UZQ9xn5BZ3Tqd1fVP+DUPwI/onm9dYAuj8XdB1Z0SRa+1wAqB1eIqj4S9p5XAGwIbBLaz+xNLFS4j36ve8m/SnX7S2IRVuxmSgVldHMGI7rHWBQA/K+LsRhc9/d5F+r4HpWCtQctD3az2aXZv6kw30rMjIQkcGpgle0ng2wVmdStSOKuL48rAUkjeT+zrrn/01lPfAhoNEL0WgQTl1/VRdqzAZQL/0O8/JWmuUW+kgVbApfjVbtZkYFYXRQVwL34aT56foH6sfri73u8UuFCrEx8R0+ZNgSdCvt9C4DsCiwQ2B/bdLhGYIBZtqi8nkLYS18lhD1yk821cEKhaZ4JZoy3wHP7RBXkdY942z2HN9hvoGt520jSFKbNKO+3URmkcqwPh8Yxf5074Cbm35/A+D9Rrf5987vIyjC0cpINhQQ6utT9+RHd8zu7zTXrd11uXTz/jSNeZG0ljT/yadHlgBH5E97gMXE8rXFWmM4her6zCTzva17p8+jmLmGKtRlG218HwQYitAhfx65uxa56MH51OU0R3Z1ya0Xhc1H0RfjBKgOMj3nei2pdYdzcMNwuowSUtV4TMIrzS+VmiArhHr205yYvo7qjiNgFXI/B54D9snYzvJeT/E5iDO8oxjAe17UTr7umnPS7zfndzRYPw9uiGpah4g619xq45GNF9muYpRtFR++8oXI7kXFwNSYl4rQKeweXxjsWdMFjsvnTB1af8HBfMMVLO/jrF/5m5okG8qYMqLMnbi3juksHrDkZ072jk2XQ/3A6RybjUoJfxd8cUvtZov56tj7JDKH0f+Tj9zEetmxuGzz90YISdU7GYbC+AHxCYzV5Qhs/bGbfXeRLh627B10YVv2oVw+FAT8pb3PZ9/VlnWTc3DJ+ndGAMDrH9SW2HZ/j6T8ata25W4akLnfXxcqw+bj4TWCYIW3dbpo+vU/Vxth+NW8y2JfA9/O2GVlswI0zHnXnxG3NFg3iI6ANiHlbbiRn3weX4Ed19irS9h+h1tzeB3wPXqrj1p/E3H4QJcHBb4avWxbPDDriDw600eMO4jejKG7erbXTGfVCB25PqRXTj1tCmUN51t7rSEThExe0mXMWUD2ME+HNdurAAhmEU8DMdJBeG2G4gP+kObXA7U0RnS1ER3cbeu1uOwEd369bZY1tdH7kMt2hs+5dL5xIdPFNCbD9R29U58cWO+NHs/22CnxcW+NhA8wU+jISL3iRcvbSpWHWahnCuDqqwc1m8lIebc+SPYET3wjJ9prfuNh5XozBpgQ/DyBWn6WC7N8R2utruyZlPTtbHyc1Eb+8KoxwJx1ZP0whDdgE5AKSn/r/KfFIy3pGAj4XYhqnt9zn0i/dov46t8xSj1t1qaPyEYyOnojcR5AWQZSBvgRxiPikZr9ba8yG2A9X2XA79UoF/XOK7OnOrxhXj3BQhbutV3O7QR+Oh2EFVhpE4euEfFlRIb/yDofNIG1yZ+ZUF4rYJW3czjNTSVQfyhyG2bmpbmVPf7Iof1LgbOBMX6Ght3cZoykfbCpClIItBFoH8EWSE+aVkWuAX1qwssLUM2PKYGvEbFbz7rZsYzS16PUH2BRkAciSIHQPZMNbo4A47GnCt2jrmzCcj8I+PtGRfw8gYy3WA7x5i+5fadsuRPzriTokT4BzrHkZzz/QOBZkCMgnkByBjQQ4zvzSIv+sADzvY+wW1HZAjf9ys17ww5JHfMJpc9AaCXAIyFeQXIDNBvmN+aRB/1EF+ZIztiJz4YiBuDXMT4TUGDcPIAA+osJ0SYpujtjwEi1oGZrZTrFsYSZnp7Q3SR4MZnUE6mk8azK90oI8Jsd2qtjzMpn+EX16qvXULIymi9yjIa7obYxXIOpB/mF8axLU62CeF2K5T20UZ98Fu+Dl5R1mXMIx8zHCmhtguVts1GffB7/Q677TuYBjZ57s64GfG2G7J8PWfodf4EVYIwEjYo+0wkFd1J8bTIPNAHgKpBrF9j6UzUgd9dYjtVLK9K6EL/qlho60rGEkTvQ4ge+lOjEEgQ0BOBhlpvmkQQ3TQzwuxHRVjywKz9PrmY1WIDSM3DNCB/7cY26IMXvcg3N7iDUBf6wZGEmd63wX5MchFuhPjbDfLk+Eg25p/SqanCtsbMbZl2brk11tD5Yt6bZdbFzCSKnrf1C1o1+pOjNt1PW8uSG/zT8l00sG/OsTWGb+0eZb60mXw8nLoMRcrFWUYuaMSt/VqM1sXwqzEPy8iI8Ei6Q3yKUgNyBF2+w0jn3ykM7ouIbZVauucAcGrAHkCREBm2W03ktpRr9I0lWkR9pPUPky/7g7yMsj1MZ85Wdv0Mf8CsFSFbY8Q2zK19cxAXxqtgrcSpJvddiOpHfVO7aji0lS2so9V2xn6dQ/9+r6Yz7xV2+xr/gXgrypsXwqxLYqxpakfdQVZUbuvGEayRW+l7rttY6JXdh5XYRsaYzsqI/3oD3a7jbR01vH67xUmemXnPhW2r4fY7lfbqSnuQ4M1cLEeZA+73UZaRK8ryEKQz0D6muiVlRlEl0ffHZe8u01K+09r3b4oruK2YaRH9LqAHAiyWU9Bqygiek9oefmw129N9GrxUxW9izPYf6bovV4CUmW32kiZ6NWapZ1ZRPTq8jLRc/xQRe+6jPWdfvpksBnkELvNRlpFryvIhyDvu8rJkaL3pEs+DX09YqIXOtP7S4b6TSXIM3qfb7ZbbKRY9ABkjH7vOlvTKwteheQVGeo35+g9fg+kk91iI+2iVwmyQB9drjHRazBnq+gJ8B6utt5YoF9K+8yOepyAgIyw22tkQPQA5ACQz0H+Y6JXFubgnxMRfL0JzMYV2eyRkj5Trff3UbutRoZED0BuDAQlGih68kWQe0FeAnk8fPdHLuips7zZwNshIvhuYCaYQBGUY/TefuL6gmFkS/Q6grzTcNGTTrrj40KtzjwOZANIL/P/FhGsBlYWEcHdE9BfrtN7O8FunZFW0RuoxUJbRdj3V/uu+nV7kNNADo75zC9rm0Dx0cJMfXkF5Nvm/1pUAvsB44Ff41dnCb6WArPgTyNd8Ydm6TOD7NwUw6j/wHnTncFh1GMmqCJYuRk2f6QzrmUgszXKvmsD7kcnkKn6iihzJZNq77qQYzU5+QsR7avUbn/cjNwL3gl+HqBRD1oAA6DfeVrRem1IQvirIDNAvu6irHW+J7sFPmNGRJvl7rXl62naPmLWL+3V/pTdOiPPgrcPyAdO+IwG+rKF7ooYqxHVVSEiuEzL/48C2aUOordJd1gcZKJnGA0fpEeDvAvyDfNFo4ngAK2YUw2yuogIdg8RvftAPgJZvPVeWhM9w6jrYKwAuVS3tx3n1oykM0g7802j+r2lEyS52NW525Jz6b1qVNxGBERvhkbZBWSiiZ5hlDb4BumjV+HrBvNNk4vgAA1IBNcETy4QvVa6NvgJyO4meoZhZEUEW+kfpG1rix6ADNWvH66D6K3WPMywl4meYRiJFMDdto7cygP6veOKiF617t4pfP3SRM8wjDSJ3i4gH4Ms1QrJ9nhrGEaWRQ8CQY0LTfQMw8iD6FVpKfhVGn030TMMI8uiByCHaXqLmOgZhpED0QPd32uiZxhGZkRvO43Cjomw7wByf+3zMOQs3cHRO+I9rdV+qfk3nP8CF3D6vvXvq4gAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NDQ6NDErMDA6MDBfSRvdAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjQ0OjQxKzAwOjAwLhSjYQAAAaV6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19k01uGzEMhfdzCl7AgvgvLbqI7SQoioyB1u0duu/9UVKBowkgRGMKkvyJ0rzH2SDbz+uPv//go9F12wDqF7/eO/zhWuv2BjmA8/Pr9x0u96fzY+Vy+73ffwEqoMWeeD6zT/fb22MF4QK1IEvnBics3h2bxFIdbW4l2AGLti5GcKKCxs6+ADkyUuHmKg6nWlpn81VGCZBLMxXEBI2tU1+AGqBERuw987gjIy04GwmFqqPEXTtRq6sbenDxt1BTjIGZVcMF1wYnZGSZhtQbrbg+NKws1Vu+SLijvnoRDG9SZGLtTQOQ7lptRaYvobIaYaSKpFQ5dq3QdCZQw8a1Dw8rcW0rNL05heZMJKmgdnFani9wS9LdMA6gUtPFJalJakFtwpo3xVCTV8c/79dPtfdejefbfp3VGMYBzZqTCJ6VJRmzfvLRWSUxAZvFIBE+PZeINq2ViD4dxIyjUTg6PBiCoyO4vLx+44P67+t8EJmyQzmIiWNFD6JJHvgxt3EfPip11CXnjy88xtt/bkfJ+b+V87gAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAOx6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAGJUdjztuxDAMRK+S0gZkgsOvFCPAAk6xVfYAi63cp02zhw9lVcTD8HH08zxut/trOU6cz9/765RzPsh6LF+P9fHxXjahQFe0DZQsNeyFPAS9bUzCqj6KgaSG0ZhspHO0nYnVOK+YMnuOyaA2tF+2keXYQd6HRSsrQtPaLqQ93edeHxoTKfVww0ShMaRUVilcBzOhkBky4UQDDZGOqR4m3QtExKyESoRk7Yhnl/mXMquIFfJhKXGhzACaENf5qrg5wbvZPA8OVP+1/X1/gvj9DzvAQ5VV/cZDAAAAAElFTkSuQmCC) |
모습 |
---|
3-페닐아조아세틸아세톤은 분말 모양의 노란색-주황색 고체입니다. |
관련 화합물
힐 시스템의 공식은 C11H12N2O2
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |