몰 질량 of Thymidine (C10H14N2O5) is 242.2286 g/mol
C10H14N2O5 중량과 몰 사이의 변환
다음 물질의 원소 조성 C10H14N2O5
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 10 | 49.5842 | 수소 | H | 1.00794 | 14 | 5.8256 | 질소 | N | 14.0067 | 2 | 11.5649 | 산소 | O | 15.9994 | 5 | 33.0254 |
몰질량을 단계별로 계산하기 |
---|
먼저 C10H14N2O5에 있는 각 원자의 수를 계산합니다.
C: 10, H: 14, N: 2, O: 5
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C10H14N2O5) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
10 * 12.0107 + 14 * 1.00794 + 2 * 14.0067 + 5 * 15.9994 =
242.2286 g/mol
|
화학 구조 |
---|
![C10H14N2O5 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAACqCAYAAAAwTfPsAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYESw15a51IQAAAAZiS0dEAP8A/wD/oL2nkwAAHfhJREFUGBntwQmAFnSBP+7nHYYb5fBAPDJQzDi0JC1bLUusbdXKDK3csM2yy11zKbFT280i/7kt+7NNM1szO7QylbCS1rSo1jtR8AjQ8AAP7pth5vO3xhRhZoBhBmbe+T5PRVFsJ2E3vAX7owfm47cV7lIURVEtwqfCqpCwLqwICQnTwmBFURSdXfh8SLgjvD7UeFbYJ/xXSLg/9FUURdFZhaGhLswJO2lC+I+QcJ6iKIrOKpwbEj6sGWFgWB3mKYqi6KzCL0PCAVoQpoeEvRRFO6lRFO1riEbztGyeRnsqinZSoyjaVzeNGrRsvUa1iqKd1CiK9rVYo120bDeNFiqKdlJjI2FgeGMYF44Ju2tCGBAOCbtrRjgwvFLRlf1Ro1dpRuiGQ7AccxRFewt7hB+G9SEhIaEhTA372UA4OSRM0Ixwd6hTdFnh6JBwvWaEE0PCdxVFewu7hTmhIVwexoaR4Q3hv8P68GTY33PCySFhgmaEu0OdossKlfDrkHBOqLGB8MqwIKwOByqK9hauDAkTNCG8LyTc5Dnh5JAwQTPC3aFO0aWFIeHekDArfD18NUwNdWFNOFETwr6Koq2E3UNdeCBUNCP8NiSM9qxwckiYoBnh7lCn6PJC73BW+F14KiwPD4RvhP01IXwkrAvjFEUbqMURqMXPKkTzrsUROAr3KoqtUGE1voav2XK90B3fCY9UuF1RbINavFSj2Vr2J41e6sXeEfbTtL0VRStV+Fp4GT6Ea8NhFR5XFK1Ui94ardGy1Rr18WKjMUzTBiiKbfPPOABvwHXhdRVWKYpWqMEyjXbWsv4aLfViX6gwpMKQCkMqDKkwpMIQ3KcotkB4SzjfRirUYRzmYAwuDxVF0Qo1eECjUVo2WqNZiqINhd3xY3w6nG4jFRbieCzFOExUFK0R+oalYUHorQmhW7g/1IU9PSucHBImaEa4O9Qpis0I7w0J68IbNCG8JawP9eFtiqI1wpdDwjdDxUbCF0PCZZ4TTg4JEzQj3B3qFMUWCF8JCQvD/poQzgkJy8NBimJrhV7h5pBwazgjnBA+FP43JNwVBnhOODkkTNCMcHeoUxRbINSE60LCrNBfE8K3QsIjYXdFsbVCr/DZ8GhISEh4MkwKO9lAOCkk/KtmhLvCOkWxhcJOYUZI+HnoZiOhV/hDSJgeeiqK1gp7hYPDPqFGUWxH4aXhqZDwFU0Ie4R5IeFyRbEtwqvCW0IvRbGdhSPC2pDwAU0IrwgrQsJZiqK1wuyQsJ+i2AHCP4WEteH1mhDeEepDfThOUbRGuD0kvEpR7CBhckh4OgzThHBuSFgWRiqKrRWmhYSximIHCd3Cz0LCH0NfGwmVcFUDS8czBYMUxdYIPwoJ71QUO1DYOdwXEq4JNTYS+hzKFAS/QnedUgaR08kHSQ9NyqnknZ6Xo8m/kEGalN7kX8jxiqaFS0PCBxTFDhaGhadDwr9p2hA8huAinVIOIiEhn9GkLCQzPC+XkZBRmpTdSMhUXVyN5i3WaKCi2MEqzMW7sR6fDe+xqfl4G1bhY/iIziv4DBmmaDM1mrdUo/6KogOo8CuchQq+8R7G2NSdeB+C/8LROqcfoRv+W9FmajRvsUYDFUUHUeGiFUw+kTnf53rsaVM/wiTU4moM1/nMxcV4MzlJ0SZqNG+JRgMURQeyE5+8hsXYE1PQx6Y+gx9hEK7HAJ3PeXgak8kAxTar0bwlGg1QFB1LHcZhNg7Bd1DxYsH7MQMH4ofoplOpLMansQf+zeb9hMwgM8gMMoPMwM2Kv6rRvCUaDVAUHc8iHI+leCc+bVMr8FY8hTfjKzqUDCZHk38h3yT72tS38Qd8lByiZY/gQTyIB/EgHsRsRcvCy0PCLEXRcb0Z69GAkzTt77AGwQdtdxlAxpDxZDKZRuaTkJCQkBPIQSTky56X0aSO/J5UyEIyw/NyGQkZpUnZjYRM1cXVat4SjQYoio7rl/gULsDlmIM7vdjv8CFcjq/jIdyizaU/RmAURmIkRmEPTVuM+zAL9+KP2MkmKveSb+CfcZKi7YXeIWGVouj4LkXwCAZr2n8geAbDtF5fvIqrTyYXkJ+TP5OQkJCQkJBl5P/IpeQscgzZU5NyEAn5shdJfzKfzCXLyAzPy2UkZJQmZTcSMlUXV6sZFVaHNegdelVYoyg6ro9iOF6Pa/BGrPVin8BwHIcpOBzLNK87DsAIjMQIjMSBqGHBLXi9F6zDbMzELMzELNxPpcE2qSwln8R3Fe0jzA8JeyiKjm9XzEHwHU3bCfch+Clq0B0jMA5fwI/xAOoQBEEQrMU9HD+ZfJq8nexHamyzHERCvqxJ+V8SMsPzchkJGaVJ2Y2ETFU0L9wfEg5UFJ3DwViBYIIX64aDMR4rEfwZqxAEQRDUYQ6mYBLGYwx6aTcZRqaR0zQpI8g08k3Py0TyWzJUk9Kf/JZ8RdG88IeQ8BpF0XmcgHrU4ziNdsVDCIIgCIInMA2TMR5j0FuHlwrZR7Ht5nPFQv74a8Yqis7lcwiWYRQ+gaABP8cFOBVj0EenlF7k+2QBeYlim30fwbsVRedSwfcQzMXNCP5V1Ug3MpWE3E36KrbJfyP4iKLofHrhVgQNWItdVJXsTGaSkGtIjaJZNVq2RKMBiqLzWYMTsAwV3ICFqkplGU7AYpyAcxWtdjaCryiKzutBBMeqWjmG1JEG8m5Fq5yO4BJF0TkdhmABalW1/AsJWU0OU2yiRssWazRQUXROp2p0JdarapX/wsXohWvJ3oqtcgyCGxVF59MDTyM4SJeQ7uQmEnIn6aPYYociuE1RdD4nIrhLl5JB5E8k5GpSUWyR4QgeUhSdz/UIztTl5OVkCQn5tGKL7IrgaUXRueyOdajDYF1S/p6sJw3kJMVm1aIBdagois7j4wiu06XlkyRkOTlYsVnLEfRTtEo4MJwffh7+L/w8fDEcoGgvdyN4hy4vl5KQR8hgRYseRbC3YquFiaEu1Ic7wi/CXaE+1IVPKtraKAQL0VOXl57kdyRc9330VGVCJRwUxoePhlPCAVphBoLRiq0S3hsS7gkvs4EwIswKCf+oaEsXIrhI8ZwM5gvXYy3+RxUJY8JdISEhISHh12F/W+E3CN6s2GKhe3g8LA/7aEIYFlaFR0Otoi3UYj6CQxUbOhgrEExQBcIrwvKwIpwTDggDw0HhgrA+PBleYgtdj+AJnImKYrPCG0PCFVoQfhASXq9oC8cieFDRlBNQj3ocp5MLd4b6MFYTwukh4Vpb6AoEwWrciiMULQqfDAkf1oLwzyHhLEUb+Px/0O9+nKNozucQLMMoHVSohKHhuDAxfDfcFV7uWeGwkDBFC8J9oT7sZQtMRhAEwZO4BrspmhQmhYQTtSCcFBLOV2yjDCSryXoe21vRnAq+h2AudrODhYHhiHBmuCRMD8tCQkJCQsLJnhUmhISPaUG4ICScVGvzltjU7jgBB+N7+ALqFRuq16hGy7pptF6xrU5GL9zI3o8pmhOchv1xGH6CsVinnYXBGIWRGIlRGIEBmvYEZuI+zMR9uE+jvTV6RMvmarR3rc1bonnD8Cm8FRPwv4q/eUqjPbVsT42eUmyrUzX6jmJz1uDtuA1H4hs4TdsZhFHdGbGO0RiB0dhF057GvZiF+zATMyss1ryeGq3TsrUa9aq1eUu0rBYH42r8Dh/Ek4rbNDoSkzXvdRrdqtgGGY5XYxmuVWyJ+Xgbfov3425cZOvsjOEYiREYiREYikod6nmiG3tqtBSzMQszMQszK8y19ZZqNEDLBmm02BY4AUEQBEEQBEEQ/AlfQQ9dSBgUJoWfelaoCX8Ka8OBmhBGhXVhZqgotkHOJyHfUmytd6IB6/EWTeuDV+FUXIAb8AiCIAiCYBn+D9+6nQ+FY8Je2lA4JSScrwXhuyHhSFvglXgIaxAEQRAEQRAEdbgTx6pyYadwblgaEhrCSM8Kx4WGMCe82gbC4eGR0BCOUWyD1JA/k5AjFa3x7wgW4a14N76EazEb9QiCIAhW4U58B2fjH/BS20HYPawNs0MPTQgDw9LwZOhpKxyOqzEHDQiCIAiCIAgW4SYMVWVCj3B6WBASEqaFMTYQ3h9WhoQ54XdhbkhYHv5RsY1yNAl5mFQUrVHBVQiCIAiCdZiDKTgP4zAS3bSj0COMDOPDpDAlzAmneFb4fyHh66GbDYRe4dqQMEEr9cdncTuWIwiCIAiCIHgUF6GXTi50D+PDwyEh4ffhDZoR9gqfCD8M08IPwoSwh42El4Ueiq2QK0jIuYpt0Ru3I1iAf8M4vBzdtaPQOxwS3hsmhZ+FuaEhJCQkJCR8ybNC33BzSLg3fCF8OHw5zA0JPwzdtIHDcRXmIQiCIAiCoB734hSdUKgJ48JDISHh3jBOGwkHhWfCDaGXYgukL1lOGsh+im31EixAcKk2FrqHYeH4cF64OswM60NCQkJCwrowM1wdzgvjwshQ4zmhRzgrzAgJCfXh1vC+UKONDcaFuBurEARBEATBctyCkTqJMDbcFRISHgjjQ402FA4OT4WEX4Teis3I+0jILYq28lrUoQEna51aHIh34tyFXBpmhnUhISEhIWFduC9cFT4XTgwHhG62QugRBoVa20EN3oob8DiCIAiCIJiHy9FPBxWOCLeEhIR54fRQq52EA8MTIeGW0E/RgvyahJymaEvLEFxo8/bEWJyJSzAdKxEEmcetISHhiTAlTArjw5jQWyc3BBfiHqxBEARB0IB7cYYOJBwWpoSEhKfDxNDLdhBeFh4LCb8NOymakH1JPVlFBijayssQBAd4wb54Cz6Jy3E7ViIIgiBowBxcjy//JyeGV4ZeqlwN3oafYT6CIAiC1bgVr7QDXcuIcG1oCAmLwqdCX9tZGB4eDQnTw86KjeRzJOR7irb0CQTz8E38AUsRBEEQBPPwC/x/+Cccir4Ke+GrmIG1CIIgeBJXYmfb1764ZBDPNLA4rAyTwkA7UNg3zAkJd4RBig3kARLyJkVbugdBEATBIkzHJTgTY7G7YrN64AO4GU8hCILgfkxEjfa1Fy7GOgRrJvO5MFgHEV4SZoeEu8IuimfltSTkcdJN0VZeiWA1LsFHcRR2UbSJl+EyzMJ6BMFq3IojtL1dMAmrENTjauynAwr7hIdCwt1hV11eLiEhkxRt6T8RTFa0q544HTfjGQTBk7gGu9l2/TARSxA0YAoO0sGFPcJ9IWFWGKLLSi+ymISMUrSVWixAcIhiuxmBb+F+1COYg39HN1uvB07HAgTBNIzRiYTdw4yQ8EDYU5eU3uQj5FJFW3orgvsUO0QvfAg3YyHq8EccY8t0x+l4DEHwe7xBJxV2C/eEhAfD3oqibfwEwScUO9xr8GPMxhJch8GaVoNxeAhBcC/GqQJhYLgtJDwchqo6eRNZROaTfW0ifcgicpWiLQzCGqzHEEWHsTM+j7uwCJNQ6wVjcTeC4H6MR40qEgaG29axbhRT8FJVJceSkJAbbCJ9SchURVv4GIIbFB3W4fgl5mACnkIQPIz3oZsqFfq/mu8i+DP2VzVyLAl5hISc4EXSl4RMVbSF2xCcrOjwBmEOghWYiF66hr64CcF8jFQVciwJOZs8TuaRfp6XviRkqmJbHYBgCXorOoVZCH6q6+mDXyFYgNE6jfQjJ5KryKs9L8eSkDPIe0nIhZ6XviRkqmJbTUJwiaLT+AGCm3RNfXAjgqdwkA4p3cih5GvkZjKH1JGQ//S8HEtCziAV8ntSR17hr9KXhExVbIsazEPwWkWn8UYE03VdPXEdgkU4VIeQYeTT5BfkAbKShISEhIRc63k5loSc4a8ymtSR20gN6UtCpiq2xZsQ/AkVRacxGMESVHRdPfBTBIvxattd9iAfJFeTe8giEhISEhISEhIS8nvPy7Ek5AzPy3+RkA+QviRkqmJbfA/BZxWdzlMI9tK1dcePESzB4dpV+pHjybfJH8hjJCQkJCQkJCQkJCQkJOQhUuOvciwJOcPz0p/MJwvIEBIyVdFaO2MlGjBU0en8GsGbFd3wXQQr8AZtpyf+Ht9mznyymqwmy8lKUk9CQkJCQkJCQkJCQkJCFpL9/VWOJSFneJH8IwmZTEKmKlrrNAQ3KTqlixD8q+IvuuFyBCtxtNbbH/+OG/AAViL8egkJCQkJCVlNlpGlZClZTJaQpWQZWUbWkpCQkJD3+KscS0LO8CKpkF+TtSRkqqK1foPgVF1EreoyU6ORir+ox/vRgH/C9Xg7ptm8YXgXDsdQvAQ72cS8Gk3rhV6aVoe1WId6dMNarER/LaqEfAx/VGyLl+IIrMQ1uoha1eU+jUYp/qYBp2EVPoYpOAnXe7Hd8Ha8BUOxD3axWTf34JSVdFuKdViJVViN1ViFlXgGj2IeHsNCPE1lia1WmUW+hrMVrfU+VPATLNdFVFSXgViEFdgZUfxNBf8PH0M9zsGf8C6MwhAMwnosxSqswWqswRosxwoswnw8xoCHuf8Z9niSyjPaTPpjfzxK5SmbSG+MwFIqs0mNv6o0KDangj9hPxyNm3QRFdXnCQzBUDyi2FAFMzAKT+APeBqP4s+Yh2ewEM+gQaeQvvgu7qfyGcXmvA634DG8FPWKTutGBMcpNlaLNQguUzVyBFlHGsgpis25DMEXFZ3e1xBMVGzsPQhWo6+qktNIyGryGkVzemMJggMVnd4HEFyh2FANZiA4TVXKRSRkPtlH0ZRTEPxeURVeg+BOxYZOQvBn9FCVUkt+RULuIn0VG7sRwYcUVWEnNGA1uin+ooJ7EHxQVctA8hAJ+QmpKP5mL6zHagxUVI0/Ixiu+It3IpiHHqpeXkYWk5BzFX9zDoKrFFVlKoK3Kyr4I4IP6zLyJlJHGsi7FH8xC8E/KKrKBQg+qzgBwTz01KXkLBKyihyqazsMwQLUKqrKqQh+oGur4HYEH9Ul5RIS8jjZS9f1dQRfVVSdMQhm6NrehuAJ9NYlpTv5NQm5g/TW9fTA0wgOUlSdPqjHOnTXdd2G4AxdWnYhs0nIFbqeExHcpahasxGM0DUdj2A+euvyMoIsISETdS3XIzhTUbWuRTBO13QrgjMVz8lbST2pZ9nxOr9dcRQ+il6atjvWoQ6DFVXrfATn6Xr+AcF89FFsIOewaAZDHsZBOof+GIPxmIQpmIMgCF6haR9HcJ2iqr0HwY91PdMRnKVoQq/LETyM3XQc/XAo3o+v4hd4FEEQBEGwFL/HN3Ggpt2N4B2KqnYQgvt1LX+PYAH6KJrSC39AMB09bV/dMRLjcB6uxkzUIwiCIFiLmbga52EcRqJGy0YhWIieiqrWE3WoQ09dx28RTFC0ZA/MQ/A/2kcthuF4TMQVmIn1CIIgCNZhJq7GeRiHkajROhciuEjRJdyP4GBdw5sQPI1+is15BVYg+LjW64ZhOB4TcQXuwGoEQRAEdZiDKZiE8RiDntpOLeYjOFTRJfwIwXt0Db9BcLZiS70DDajHcTZvKN6Kc3Al7sYaBEEQBOvxEK7BF3EyRqOH9tUT/4zgQUWXcR6C81W/oxE8g50UW+NcBMswUsseQBAEQfAEpmEyTscR6Kt91WIYjsdEXIE7sAbBE7hB0WWMQ3Cd6ncLgnMUW6uC7yOYi10177/xS3wV78dh6Kd9dcP+OAGfwQ8xA2sRBEEQ1OFhNKAeb1N0CS9HMFt1ewOCZ7CTojV641YEt6CHHWNPjMWZuATTsQJBEARB8ASmYTLGYwz6aDQRwXIcpKh6tViDevRVvW5G8GnFthiCxxBcpH0NxBE4HZMxHcsQBEEQBE9gGibjdByBfjbvWwgewe6KqjcDwatUp79DsBgDFNtqDFYi+IhtNxBH4HRMxjQ8iSAIgiBYhOm4BGdiLHbVej1wC4Lp6Kmoat9HcKrq9L8IPqdoK+PQgDocbcv0xxiMxyRMwRMIgiAIgkWYjktwJsZisPYxGPMQXK6oap9BcIHq81oESzBA0Za+hGAhhntBT4zEeEzCFMxBA4IgCIIluANXYCKOxzDb3yuwAsFZiqr1dgQ3qD7TEJyraGs1+CmCVXgKSxAEQRAEy3EbLsMEvAl761jegXrU4zhFVdofwZ9Vl8MRLMFARXvoh8UIgmAdZuJqnIdxGIkancO5CJZhpKLq1GAFGtBf9fglgi8o2tNgfBEX4Gh007lV8H0Ec7GrourcieBw1eHVCJZikKLYOr1xK4LfoIeiqnwHwQdUhxsQfFFRtM4QPIrgW4qqcjaCyTq/MWjAcuymKFrvEKxE8FFF1fg4goU6v58h+JKi2Hbj0IA6HK2oCq9F0IAr8V7so/M5BA1Ygd0URds4H8FCDFd0ejVYiCAIgrWYgymYhNMxFsN0TNcjmKQo2k4FVyF4AAMUnd7+uAEP4k4sQBAEQRAEi3ErrsTn8S6Mwc52jFegASuwu6JoW/1wD4JfolbRKX0SgzWtJ0ZiHCbiEkzDfARBEARBsAh34Gqch3EYg77az08RXKAo2se+eBLBhapQRfV7GR609QZiGIZhGEZiBA7ATpq3GLMwE3MxF3MxE2u0zijcg3UYhvmKon28FjehJz6Ebyo6vCE4WfsZiDEYj0m4GndgFYIgCIKgDnMwDZdgIo7HMNRo2TQEFyqK9ncqgnU4ShWpqE774zt4E1bafmrxEgzDMAzDSIzAvuimaevwGOZiFmbiYSzB3rgGDXgJHlcU7e9C/CsW4tWYo+hwjkKNjqknRuIEnI1LcTPmIwiCIAiCILhLUWw/NZiCYCb6KzqUGkzDFeimc+mJkRiHibgEt6EewZN4haLYvnbCvQhuQDfFDrczBmnUGx9GRfU4AN0VxY4xFE8h+JJih/sQ/ojdFEXRHo7EWgT/qNgh+nrBF/AbRVG0l/cjWI3XKLarXTAPh3nBEEVRtKeLEMzHPor2FSpe8Pd4GkcpimJ7qMWvENyJXor2E74ePuwFx+AiRVFsLwPxICahRtF+wr5hdvi4oih2lD6aV4PdMVCx9cKo8I3QzbPCS8LscKaiKDqKw/EzrEQQzMck9NNoP6zBtzXvYqzBSO2gVsf3J+yFH4RTKswLR2GYoig6gvG4TKMf43bUYiwm4vU4EjXoiR6a1x09UaOrCJVwTtjds0KP8NMwJfRUFEVHsT9WYzleY1MfxDs0Go7gSs27DMFo7aBGB1QhCG4Je1ZYh5OxHmcriqKj+Bh64Yv4P5u6FNfoIGp1IGF/7FLh1gpfCcFN4egKj4eTUKsoio5irEY/0AnU6liG4srwjgq/q3BBqMdvw9EVHkadoig6iuGow2O23FC8V9P2U+3CGM8Jrw8Lwhs9J5wZjlcURUfSA8E8W2Y4giAIgiAIgmC0ahR2DnPCmZ4TjgwLwjGKoujI6jDflhmO4KcYiqEYiqEYiqG4CsFo1SrsEx4Kn/WccER4MhypKIqOai4a0N/mDUdwpeZdhmC0dlCjA6jwKF6Hd4XPe1aF6fgH3Ksoio5qOio4TrF1wuAwI0xSFEVncASCOdhVy4YjuFLzLkMwWjuo0YFUeBJj8ZZwmKIoOrrpuAjDcBs+iJF4Od6OH2CibXM4focVmIMztIfw+TAzvFwTwk5hZvimjYRKeGeYGuaHFeGJcH14qxaEHoqi6CwqOBtLEARBsBKf02g4gis17zIEozXqg4fxZtTiSKzG4dpauDgkHKIJYUBIuNEGQm34YUhYEL4dJoUrwjMh4fLQTVEU1aInjsQpeDsOQR8v6IXXYD/NG4bXoLcX9PJi8/BubS1cHBIO0YQwICTcaAPhvJBwTehrA6F/mBYSzlYURbF5ffFKTML96K+thYtDwiGaEAaEhBs9J+wcloX5oZ8mhF3C4rAw9FEURdGy1+EWPI3zUaMVarS9N2InXF1hhSZUWIifYBCOVBRF0bLf4PXYD+/BP2mFWltmdOhpU/1sarRGd2nZnTgNo/BLRVEUTatBg0bLcA9GaoVaW+ZyW26ARku0bJFGAxVFUTRtEP6Ac/B7vBJH43+0Qq0t8xHMtqm+uNaLrdGoh5b11GiNoiiKpi3CBHwKw/E4JuA6rVBry9xW4S4bCQNs6nGN9tWyoRo9piiKonk/w8+0gRpt73caHaNlx2g0XVEUxXZQo41VuAe3Y2w4ShPCsfg73FRhtqIoih0tXBwSDtGEMCAk3GgDYUxYHZaED4adPCv0Dx8NK8LyMEJRFEVHEC4OCYdoQhgQEm60kXBkmBMSEpaEhIT7w6GKoii2o4oWhMNwAKZWWGwjoTtOxhMVbrKR0ANH4VXYGUtxG26psF5RFMV29P8D/WF4HbRYziAAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NDQ6NTMrMDA6MDAEfApqAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjQ0OjUzKzAwOjAwdSGy1gAAAc96VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19VMtu2zAQvOsr9gdE7JOPQw+xnQZFEQlo3fxD7/1/dJeGQzlhS4oEtRouuTMDLRDtx+X77z/w3viyLAD4n6e1Bm+CiMsrxAJOzy/fNjhfn073yHn/tV1/AhWg6nu8P2KfrvvrPUJwBk0kmTnDyomo1iaACXsbW9mBkqg0ZoEVU8tSlSZAcSClgqh+gZUSkxHaBKiwebSoKGlkxIxos6OtZ+RsTNkXopkzT3AZdo8KViYBToYknvkzrvjB7AcrMns+a8V4dsHaSy5I2D+rspZZvubnWlBTJQjJTYqUCY5cmii0iEnjWAn5FfMMGro4eeo1SI5VNnPCZ9BQxpWr1RRb3xTnT6GhzSohdy6dQadeZlQ6b3ukqljcDyHTP3OGOqsmdahiINGR05pCH0dayWhuqMTo2s+Id+Pscc8mXlGL4gxbLTO3PW+XBz/fHH7at8tweHQePlYfMtyqMYYno9twHvvIw2D+Dcrwkfqowy7sow1XUCiucP768oUOHuhhooPU1Cc+KEp9koNw1Cc9CHSL2If8FnGf8oH2W7bSkXIgWePO7+81cJ72gdsjk/F+/8/4evkLeSDixSdrA1EAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAQh6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAGJUlkLtuA0EIRX8l5a40RrxhbFmKtCncbZUqcrW9Wzf5+MBGU4DOAPfCdtDxWn62z8eTtzMs+1qxk21fd16P5V7k9XgedN8/fhcFEmcZFwaizDluAhSTeVwQpksqjRtBIGohAiYrgBAqStpF6IgmBSsPMZlnqxAJeUECRRLtXjeTLMSQaTW3/yQkCglMacJgOPOflDGPUQIlJNSNCpoYWiyw+vxEFo42GBjL0ilYNbVIu6mnbZ/daiMCUWdv+4LJJKPlqL1zLaTYJTbDpK8QSCg1RZW1p1jfJZv4PF2v4/19VZCRkO+vq4P//gE99VBsYr6qXQAAAABJRU5ErkJggg==) |
모습 |
---|
티미딘은 작은 백색 결정 또는 백색 결정성 분말로서 고체 형태로 존재합니다. |
관련 화합물
힐 시스템의 공식은 C10H14N2O5
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |