몰 질량 of Teprotide (C53H76N14O12) is 1101.2571 g/mol
C53H76N14O12 중량과 몰 사이의 변환
다음 물질의 원소 조성 C53H76N14O12
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 53 | 57.8037 | 수소 | H | 1.00794 | 76 | 6.9560 | 질소 | N | 14.0067 | 14 | 17.8064 | 산소 | O | 15.9994 | 12 | 17.4340 |
몰질량을 단계별로 계산하기 |
---|
먼저 C53H76N14O12에 있는 각 원자의 수를 계산합니다.
C: 53, H: 76, N: 14, O: 12
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C53H76N14O12) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
53 * 12.0107 + 76 * 1.00794 + 14 * 14.0067 + 12 * 15.9994 =
1101.2571 g/mol
|
화학 구조 |
---|
![C53H76N14O12 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEECAYAAAC1LIjGAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgcaOkkLSAAAAAZiS0dEAP8A/wD/oL2nkwAANM1JREFUGBntwQnAH3LhP/DX8+ze7MKGuWfOkRi5VqG5ElKmCKEa8YtCVlK5m1/lSI4VctOMuRLNbc6GkiUi99xjh9173n//2f/R/oXZnu/3+T7PPq+XYnGW5cmBGuUzZBXyBdJHo+xH2imKomi5sgV5m3zZXDmBbEOGk401yt2ki6IoipYrW5AzyL2kKzmBbEOGk401yt2ki6IoipYrW5CTyW7kVHIC2YYMJ7eSkWQkeZ10URRF0XJlC3KyuXI9uYpsQ4aTjTXK3aSLoiiKlitbkJPNlX5kKtmGDCcba5S7SRfSnxxJPqEoiqJlyUCypUbZhaxCtia9NcpupC3ZgNSTsxRFUbQc2ZHMIb/0sWQdcpiiKIqWIfXkLyTkUAssW5CfkO6KoihahuxHQp4hHSywfIkMIYMVRVHUvnQkz5GQPRVFUbRe+T4J+QupVxRF0TqlB3mThGyrKIqi9crJJOR2RVEUrdgKfO4hXn+EbKQoiqIVOw/BZYqiKFqxtTALM9FPURRFK3Ydgl8piqJoxQYimIxlFEVRVEbWJJtplM3J6uaT7uS7pN5c2YCsp+mMQfBTRVEUlZPdyFEa5cdkV/PJKmQS+ba5chDZ16Jpi57YG8Gr6KooiqJyshs5SqP8mOxqPlmFXEHuIsuSg8i+5FfkfDKCjCB/IqPJGDKWPELXx/A03sAETEMQBMFsHKkoiqKysht5jIwkI8k4sqv5ZBVyCfkMuYQcRPYlE0hISEhISEhIWOpNBEEQBLMxAdMQnKcoiqKyshs5SqP8mOxqPlmFXGKuXEguJfuSvcn+ZDAZTLYlg8hAMoBswDJ90RdLoyc6md/qmIYGbKEoiqJyshs5SqP8mOxKupH/IZ8nq5BLzJVlyJtkX4tuaayC4xD8De0URVFURtYkm2qUzcnqZG3SlQwnPclOGmUbsp5FswXewF3oiH8gOEJRFEX1pSM5Q2V0w0sI9sO2CN7BKoqiKKonvcixpKfK2RPBG+iFKxCMUhRFUT35LBlKhpKuKmc0gnPRBxNp8wqjdlAURdHKrI5paMCW7LM/b08iz5IuiqIoWpljEDzKjR3I/SRkmKIoilamIz1uZ9Qj5EgygMwms8j6iqIoWpdsQ0LeIauSX5OQu0mdoiiK1iWXk5AbSTfyEgnZX1EUReuSZclbJGRnsgcJeZP0UhRF0brkOyTkObIE+RMJGaIoiqJ1ST25n4ScTFYnO5J1NMpypIeiKIqWLwPIFPIjc2VDMoNsZK4cTXZWFEXROmRJjbIhGUFuJ23I0WRnRVEUrU82JL8iR5BDyNFkZ0VRFK1PNiS/Iu3IGHI62VlRFEXrkw3Jr8yVz5ApZGdFURStT9YkB2uUk8hmiqIoWpesRp4ieyuKomjdcjkJOU9RFEXrlfXJHDKNrKQoiqL1ymgSMkxRFEXrle1IyFtkSUVRFK1T6shDJOT7iqIoWq98jYS8SDoriqJopdpz+tU0vE32UxRF0YodgrDMPaSNoiiKVqorXkXwBUVRFK3Y8QjuUhRF5YVlwuqhjaKalsMUBJsriqJyQl24KPwunBTuCqspquUcBCMVRVFZ4YvhF+YJW4RLFdWwBmZiNtZWFEVlhePCl8wT6sOjimoYjeA8RVFUXhga9jJP6BweUFTDYwguVxRF5YV1w+jQwbvCYeFoRTUcgAZMRV8tz9p4AVNxGboqiloXvhRGhZHhpNBBUS0XI/ijlmUFPIEgCMbjALRVFLUqrBwGhS7hgDAibKSohmUwAcGXtAyr4CkEf8W3cBeC4AkMRp2iqDVhbEjYNFwQEr6pqJZvIxiP7mrbWngBwZ+xlPcNwt8QBA9gK0VRS8LvQ8LXwk9DwomKaqnHvQh+qXb1x3gEd6Kr/9QWQzAeQTAan1QUtSD8LCT8OOwVEq5QVNN6mIXZ2EDt2QhvILgRnXy4zhiKtxHMwQisqiiaUxgSEs4Pm4eEBxXVdiqCB1GvdnwGExFchw4W3FIYhmkIZmA4eiuK5hAGhYQ7w7Ih4Q1FtXXFCwgOUBt2wFQEl6KthbMShmM2gkk4Bp0URTWFVUPCC94VJoeEHopq2w3BBPTWvHbCNATDUW/R9ccIBMGLGIK2iqIaQpswMzSEjuHRkLChojlcj+BCzWcPzEJwBuo0rUEYiyD4B05CnaKotPBUSFgrXBMSdlM0h5UxBcHWqm8I5iAYpnLqMBj/RBBspygqbQbXTeWJW9jmYo76JXd+mYMVzeVoBE+gg+o5GA1owBGqoz2eR3CdoqiCcxD8D/4HwTmK5tIef0fwI9UxFEEDDlFd9yDYVlFUwZEITsHnEfxJ0Zw+gwZMRV+VU4fjEMzGfqqrDhMR9FYUVbAbgmuwFoKnFM3tIgQ3qZzbEczAbqqvL4KXFEWVbIDgb+iAOZiFdormtDReR/BdlfEKGnCs5rErgj8qiirphuAd1OF5BH0Vze1IBJNVxoUIfqt5HINgmKKoojcQLIs7EAxSNLcDEUxVGathFmZiZdU3CsEeiqKKHkSwP0YjGKJoTm0wDsHPVc7lCE5Xff9CsI6iqKLLEQSzEFyiaE5DEDyN9ipnHczBNCynerqiAdPRVlFU0R0IghkIGnAF+imqrRNeQLC7yrsWwc9UzxYIxiqKKjoWwWzsjyVwDKYimInhWFZRLUch+DPqVN6nEExET9VxEILzFUUV1OE0BDMx2PxWwLmYjWAyfsqRXRWV1BMTEHxO9fyJuil8/RDVMRzBoYqiwtrgPATT8UUfbC2MQAOdnmDOq2Qo6aCohFMQ3Kiqhgzk9TfJG2QJlXc/gi0VRQW1xcUIpmAbC2Ygl15KQkL+SXYndYqmsjKmYw42UHW5m4QcprLqMRnBUoqiQjpgFIK3sbmPLYPIX0lIyJ/J5xRN4SIEF2kW2ZGEvEw6qZw1EDyvKCqkM/6EYAI+ZaGlngwmz5CQkNFkQ3IAWc5cWZLsSJYlgzRKf7KB4t+thzmYgb6aTcaSkANVzm4IrlcUFdAdYxC8jPU0iXQmPyRvkZAryThyibmyJrmQbELO1ij7kkMU/+5GBKdoVhlMQp4j7VTG8QhOVBRNrCceQPAcVtfkshT5JVmD3EN+TbYna5ILySbkbI2yLzlE8f98FsEk9NasUk8eIyF7q4zrEOyuKJrQMngUwb+wqorLPWRJch9Zn1xINiFPk5FkJPkzOUTxf9XhPgRHqQnZl4Q8Tuo1vecQrKkomshKeBLB39FHVeQec2U/chG5kGxCztYo+5JDFP/X7gjGo4uakHbkQXIU6aBp9MFAfA/BTLRRFE1gVTyN4CEsrWpyj7lSR+4iF5JNyNkaZV9yiKItHkcwRE3JuuQK0s5c2Y9s6AOlI1mHe7fHoTgd12McpiEIgpl4XVE0gR0wHsHd6K6qspdGWZPsSPqQ7TTKemQjxUEI/oG2akoGkmfI982VE8j2ZHOyF/kJuZDcTV4iIWH6MwiCIAhew/24DOfinzhJs8mvSQ+NcomixanDVAS3oouqy17kX+RIxYdZAq8i2FXNyUDyc3IbWZmcQAaTkJCQkJCQGeRJZl+PM3E4dsX66Oo/dcVb+I1mkZtJL43ysKLF6YkGBJtoFvkFCTla8WF+imAi6tScDCQnk43IVeQEsg25i1xBTiLfJFuRlUkbH18/TMMo1Kmq3Ex2J9uR7cjfFS3SNQh+q1lkNAnZSfFBemEKgkn4jJqTgeRkc+Usch8ZpOntiFkYg7aqJjeT75Jvkm+SJxQt0mqYhZlYWdXlVRKykuKD7Iw5CII71JwMJCebKz3Jq2SQyjgJs/AQOqmK3Ex6aZSHFS3W5QhOU1VZjoS8ReoUH+YGNCCYiO3VjLQj3yAraZSVSTeVcy1m4HEsreJyM+mlUR5WtFjrYA6mYVlVk+1JyB2Kj9IFjyIIxqgZ+TYJuVr1tMNfMBWPYxUVlS3J8hplR0WLdi2Ck1RNhpKQ0xULYlO8iGAKvqTZZQnyMgnZVXUthX/iHTyDjVVMLiO3kTpz5QHFBwrfCdeHkeHs0FmN+RSCieipKnIpCfmGYkGdhOkI7kOdZpWfkpD7SZ3q2wAvYwqexfYqIpeRs8j+5soDiv8qfDb8PtR5VzgoHKcGjUZwtKq49HJeeJDnN1IsqDrchmAq9tFs0otMJCFbaj77YiImYzy+pUmkD/kq2YpcRlYn95KlyQOK/yocH3YxT+ga7lWDtkLwBpZQWR0wE7PRWfFx9MYTCMaiXrPIGSTkWs3vdEzHZLyGH/rY0ocMJsPJONJAQkaSy8hKZFtyDnlA8V+Fn4UvmCd0Dg+oUWMQHKayNkTwd8XC+DJexwwcqOqyKplBZpP+ml8drsVMTMZbOMcHq8M6bPp1cil5gYSEhIRMJDeSg8hlZCVz5XLymOK/CjuH080TvhhOVaN2RPAyOqmc/RBcrlhY52E2HkFbVfXWBSTkfLWjE8ZiBiZjKi5BPerRH0NwEV5AqHuLOXNIyEQymgwlA0l7jXIoWdpcWYGcRrYg55B6RaNQF84MI8O54YbQSw0bi+BAlXMqgh8oFlY7/Bkzcbjq2ZC6CRx4C1lRbVkVz6IB0zEbr+FtBEEQvITL+Ps3SH9SZ4GlExlPQn5L6hTCT8LvwnqhY+ipBRiM4Dm0Uxm3Ifi8YlGsiWfxKNqrjtEITlabzkAwGzMRBOMxAkPQH3UWSTYnk0nIrxTCP0PCpuG0cGvYXI2rx2MI9lYZryNYXrGovofJ+LHK2w7BW1hSbboBwVT8EcG1KiKDyDQScrzFWFgrJLwe2oRnQsJGWoCvI3gc9ZrWCgjeUDSVa/EUOqucOjyE4PtqUye8gwacjJsR7K1isguZSUJ+aDEVDg8JF4X1QsKroV4L0A7/QvBlC29JbITd8QP8Bs8juFfRVLrjefxM5XwNwYvorDZ9HsGf0QXTMAe9VVR2I7NJyOEWQ+G2kPCV8IOQcJ4W5CAEj6DOB+uJgRiCYRiBsZiAIAiCIGjAEYqmtDUmYglNrz2eQrCv2nUmgmOwM4L7VEW+SRp46C7spzKWxPdxL45UI0K3MDPMDkuGu0PCl7QgHfASglOxG47EOfgTnsJMBEEQBEEwCX/B1fgFDsJuGKiohDNxho+nO3qiD/piDQzAAGyNbXAzgmAvtesZBBtjOIKjVc3l+1PXgNn4iqaxFA7DLXgWDQgacIAaEAaHhDtCzzArzAzdtTC/QRAEQRAEwQSMxQgMwxAMQl/U+XA7YntFU6nH3/Aq7sVYjMU/8TTGYwImIQiCIAiCIAiCYDqCV9BD7emP4FW0wQsINlBdP0IwEztZOCvih/gjnkUQBEEQNOAbmlm4ICR8P+wREm7RAvXGNZiKa3AK/gefx1roYNHUoYuiqayBaWhAEARBEARBEEzEBIzH03gSYzEWf0cwGz/BbQh+rcbswUHdmIzf4ZMIxqNO9Z2EYAZ2sGD64VTci1cQBEEQzMSLeAxPIpiN3TWf+oncHxLWDZeEhO8pPlA99kW9YlGMRHAndsQADMDq6Is+6IluFkxbPILgWPTHTMzBpmpIuCPMeIRdfsLB6/AMfqv5/ALBO/iM/64fTsYYvIYgmInxGIc7MBI/w7ZY1vuOQTADO2oen0LW4H60eYpbw9SwpuID9cU16KJYWJ9CA6ZiBU3nU5iDGVgbwxD8FW3VgNAzzAozQ49wT8hb7Kz51GE4gonY1HvWw9l4HJPxGsbhDlyHn2Fb9LZgTkYwFVuqvmMR/BqbI114TLHA2mAZxcd1K4LjNb3fIrgDXfAvBIeoAeGrIeHWsGSYHaaHrppXG1yOBkzCQ/gLRuAIfApdLZo6nIVgCgaqrocQ7ICTEJyqWCDtcSXOUWGhazgqnBe+E9ppub6A4HV01/SWxKsIvoYdEEzC8ppZuDgkHBb2Dgk3qw1bIpitcupwLoK3MUB1LIcGTEVn/BXBIMUCaYvD0UEFhOXDqqEu3B52DN3DkHCxlqkejyD4rsrZF8Er6NmekWdw5zQu1IxCfXg1JKwZrggJh6gNP0RwgcpqgysQvIZ1VN43EFyHFdCAyeig+Ng64mpsbiGFPmFwGB7GhYTfhnXDCP8mPBQ6a3n2RfAMOqicOtyJbM6wqawYJoeE7TWTsHlIeDq0CW+GhH5qwxgEu6q8drgBwYvoq7KuRnAADkRwtWKhXI/L0M6CqbuetcKB4dLwYkhISEh4O5wVtgq/8m/CH8OKWpR0ZNwf6P8M9lJ569zNbWFW2CQcERKeCp00g3BiSDgtfCYkPK42LInZmIGuqqMTbkPwHFZWGe0xCcHKuB7BNxQL5ZNo4z1dcBjqvK8N+mMIRuC1w7gnJCQkTAyjw9AwMLQLK4a1w2jzhDbhsdBGi5LDSWgYi3pVEE4KCX8NHcMjIeE4zSD8JSRsE04OCb9QG76G4E+qqzPuRvAkltW02uFQBLMwBtPQgOUVi6Q7xuBSfBpD8QdMRBAEWYVHwmXhwLBOqAt9wuAwPIwLCbuHs8OJYYdwXjhci5Ie5A0Ssp0qCZ3C0yHhu+FTYU6YEdZWRaEu/DDcGjqEcSFhK7XhMgSHqr7uGIvgUSxl4XXCQAzF9ZiIIAhmIfirYpGdiV/hCwiCIBiPERiC/qh/mf7hoHBFGB8SEhIS3goHelfYMnwjbKTFyTAScocqC9uHhElhhfCbkHBnqFNFYeWwWegR9gwXhHaaXxu8gWB1zaMXxiF4GD0smG74PH6GezADQRA04DGchZ/gcQQvYxnFIunkPT3wN5yFPbA82qA/hmAEXn+Iu0NCQsKr4fowNAwI9Vq89CHvkAayqWYQrgoJV4Ylw6shYS9VEn4eLgiHh9vCtmrHQARPaF7L4ykE96CL/9QNgzAMYzATQRDMxjgMx2D0Mr8eeBjBX9BTsci642mMxI/wR0xCEAQ5nBvCJWFIWFurlHNJyBWaSVguvB0SvhD2CQlXqYKwbrjGPGGpMFbt+BmCUzS/FfEsgnuxPgbjdIzFHARBMAtjcToGo6eP1huPI7gPSygWyWAEQRAET+I87INVtXpZi8wiM0k/zSgcFhKeDUuEXUKdKgh7hB/5N+GR0F5t+BuCz6kNa+JNBEEQBO/gNhyDrdDZwlkB/0JwKzoqFtoFCF7Gr/EVLGexkx+RkDM1s9A2PBzOC91D7/CNMCSspILCDuF//ZvwN7VhRQST0UHt2A1voAG34hgMQgdNpx/GIxxwNmmn+Njq8QqCdbRaGaBR2pBPkvbksxplOTKYLKMGhE7eFVYI94edw/ZhTPiECgldw9iwvHeFweF3asO3EYxUm9qorP4cdROZRX5P2ig+lk0QPKtVy8MapRu5g/Qis8mXzJV9yMFqTDg+7G6e8OlwngoK64ZLw8jw87CE2nADgv0strI+mUBCLiT1igV2HIIztGp5WKN0I3eQXuRmMoZ0JfuQg9WYcFHY0Dxh2XCLxU8nvIMG9LFYy6ZkMgk5U7HAHkKwvVYtT5MryZVkFLmD9CLXkC+TU8k+5GA1JgwLO5snbBwutPjZEcGfFe/K1mQaCTlV8ZGWQwOmopMaENYIB4dvhKU0mTysUbqRO0gvco25cj0ZRg5WY8Ia4Z7wibBmGB02s/g5C8ExinmyLZlOQn6s+DB/3ptv3kG/36gBYYswOmwZvhgeDEtrEnlYo3Qjd5Be5BpzpR+ZQA5Wg8La4YQwLAyweHoGwcaKf5PBZDYJ2VTxQXI1CTlADQhXh/7mCQeEIzSJ/EKjdCLHk27kSI1yANmOtFfUiu7YEecheBX1iv9Pvk6OIPuS/TXKiebKMI3SnfzA4iXtySQSsrIaEMaGjuYJW4dfqZosR0aSkYrm0g2DMAxjMBNBEJyv+BA5jTxJVjVX7jdXHtYoy5IbLV6yDQn5ixoRrgurmyfsF45UNVmOvE1CvqCouLB82PMCjsU4NCAIghkYg4kIzlR8iJxG9iPXmiv3myuPkn6kH9mU3GjxktNIyIlqRNguXBdWD5uEB8OyqiqHkZBnSRdFkwp9wuAwPIwLCXmLvyF4B2MwDIPQCT1wJ4I3sbriA+Q0sjE5lXyJ3G+uPEOGkWHkDHKjxUueJCGbqwFh67BM2DT8LBwdVlZ1aUMeJiEnKBZKWCK09a6wbrgsvBgSEhIS3g43TOf72Azt0Bs7YRjGYg6CIHgBqyr+i5xGNibdyBjyiLnysEZZltxo8ZE1SMibpI1mFtqFiWFOWC7sEQaEOs0iG5M5ZAZZW7HAwkrhpvC78IdwbFgvJCRMDKPD0DAwtAsrhr124Wd4HEEQBNNxF07GQwieQh/F/yenkY3NlT3IBHPlYY2yLLmR1JGDyPFkOa1XDiMhl6gB4XMh4dHQIUwODWF5zSbnkJA7SZ1igYTLw+bmCVeET4dvhXVCXegb9gnDw7iQkCu5HcE7GINhGIRO3tcNDyL4B5ZR/JusSbpplIHmyiYapT3ZgLQhvcgA8g2tV/YhY8keakA4JST8LGwfEh7SrNKTvErC7H0UCyQ85t+EfcP3ww7hijA+JCQkJEwI143lIGyCtj5cDzyM4C/oqVgEOZasoOXKUI3SkRxKupJfk87mymZkSzUgPBkSBoYzQsJxml324pzbafcYllZ8pPBoqDNP+FY4JBwWEhJeDdeHoWFAqPfxLYsn0MCRF5AlFB9T2pOzyFdJHy1XHtYo3cjtpBd5jZxkrnydHKyZhdVCwpuhbXgqJGyiNtyK4BzFRwpnhi95V2gbbg79w2phSFhL01mRH19LQm4lHRUfQzqRQWQQ6avlyiOkO+lOViC3k15kFLme9CdfJwdrZuG7IeHSsE5IeC3Uqw1rYDrmYHPFhwo9w4XhynBD+LqKymrkJRJyM+mgWNzkKXIuOZdcSG4nvcgosgYZTb5ODtbMwuiQsGf4fki4QG05AcGjaKcCQr1iIWUN8goJuYq0VSxO8rBG6UZuJ73IKHPlBPIHcrBmFJYI08PssFS4IyQMVls64SkEh6E9eqIn+qIv1sMAbHYxW4ZBYXAYHPYNQ8LBYWgYGr4c6sLJ4dowIlwSuioWQtYnb5KQC0m9YnGRhzVKN3I76UVGmSudyL/IwWQJzWQVdjmaux/i4tA9zAyzQg+1ZzsEcxAEQRAEQe7lzpCQkJCQkJCQcHHYNZxhnvCNcLxiIWVTMomEnEnqFIuDbK9R2pLPkQ5kc43Sn2xKHiUnaB7nIfjBEgz+Io9cxblq15UI5mACJuBfeBqPYizuG8XwMDpcGUaEC8LwcGYYFoaFXcOp4XPmCUuFOxSLIFuTaWQKWUNRvC/bk5kk5Ieqqw4vIVgPFyE4Qu1aDv/APv5Te/REz5+xSugb1gsDwqZhUBgUdguDw1bhlLCtecLS4TbFIsrnyRbkFHKURrnaXLlao6xKfqlYXOTLZBYJOVz1bITgebTBqwjWUtsuwNOYgAmYiSAIMoI7QkJCQkJCQkLCTWHncJZ5wpDwE0UTySXkQbKWuXK/ufKwRlmTXK5YnOTrZA5pIENUx08RnIVNEfxL7doVHXEtgiAIgpmYgAm/4erwdPhbGBvuD6PD6DAyjAhHhbrws3BdGBEuDF0UTSSXkO3JTaSO3G+uPE12I7uRQ8jlisVN/oeEzCF7qLwHEeyI4xH8Sm1qh6vwHA5BPyyJnmivCYQ2iiaWS8iq5CTyNXK/ufIv8lXyVfI9crlicZQfkpCZvLKTyumNOZiKzngYwXZq22Y4B3WKFiCXkFVJZzKGPGyuPKxR1iSXKxZXOZHJj9P7ZeygMvZF8HdsjgZMQUe1pzN6K1qgXEJWNVe+SJ40Vx7WKGuSyxWLsyV/geAdDNQ0emMnDMMrCIIpCK5Rm7bBG/gpOihaiHQny5J6jdLNXOmpUdqQborFWh2GI5iIjX18K2Fv/Ab/QBAEwXS8gyD4pdq1KoahjaKFyAXkWXI7OVVRfIR6XIrgLWzgw/XFPhiOcQiCIJiCMRiGQeiIOpyF4B0MVFvaKFqo3EJCQt4i9YriI7TBCASvYm3v64shuAjPIQiCYBJGYygGor3/rg7nIngbA9SOK3EuuilamDxGQqaQixXFAuqAmxG8jUfwJoIgCF7GCHwHn0C9BdcGVyB4DeuoDT1wJNoq5hOWCL8LI8MN4Wg1I8uTV8kcMpMsoyg+hs64F1MRBOMxAodiAOosmvb4A4IX0VdRs8Lx4RvmCReEHdSEDCZzyBQyWlEshGXwQ5yOlVVGJ9xGl3/w0l/IyprHkrgKyyr+qzAmdDNP+Hw4WU3Ib8g7ZCrZSVHUsCV4ZTQJ+QdZRvW1w75op/ivwj2hu3nCDuF/1YTcRyaRR0i9olgIX0dbVZHuZCwJeZQspagpYVjYwzzhzLCTeUJnzSaTScgvFcVC+oyqytJkHAl5mPRQHVugn+JDhR5hZLg0XBt+4V2hLpwS7g9dVd+S/HoSD71NeiuKliPLkH+QkHtIF5W3OTooFkjoENqYJywV/hUSbg+dVNd2mIU/KIqFNAhdNYusSJ4lIaNJR0XNCW3CBeGAsFJ4NiT8KXRQPadiGr6gKBZCG9yAzTSbrE7Gk2vJ+qSzudKOrObj6YkBGIyhGI7ReBnj8AnFxxZ2DAlzwtfC6uHlkDAqtFUd1+ER1CmKliurkrbkIXKKubIcucZ80pWsT3Ylh5OzyE0MvAUzEARBEARBcI0WLCwZdguDw1KqKHw3JMwOu4dPhDdDwsWhXuWNwy8UxUJoi45qSsaQK8gGZDlyDfkhuZ+8RkJCQkJCwiH3IZiAsRiBYRiCQdgHDXgHvbRAYcVwb/ha2DPcF1ZRReG4kDAj7Bg2CZNCwtmoUzmdMRW9FcVC2BQT8QM1I2PIKuQOsjy5hgwnISHTyDhyPTmdHEq+wElroaMPdwOCE7RA4eSwq3nCTuFUVRZODglTw5ZhizD5VO7E6SpnC9yrqFlL4lo8gbPUpiXRV83IGHPlR+TH5BrSnwwkfSyaTRBMRA8tTBgZ1jJP6BuuU2WhLpwdEqaEgbszCDMQHKvpLIHtcDnG4yJFzanD1/EagqABx6FO8SEyxlzpQB4i12hatyE4SgsTzgxbmicMDL/RDEJ9uDhMP5hbsT6+iFkIhlo4XTEIwzAGMxAEQbCvomasjtEIgjswHDMRXIlOmt8huBR7ok7NyGkaZWtyrKb1OQRvYAktSNg43BL6hOXCn8Kmmklouye/RvAq1sJemIMGHOSjLYvdcQYexRwEQTAL9+E03IdgNnZXNKtOOAbTEbyCfVDnPdvgbQT3YRnNqw++hV+rKdmYnE8Gq5x7EByqhQmbh7PCWWELza89bkDwIvpiPzSgAd80vz4YjNMxFg0IgmAWxmIYdkJ38zsWwQzsqGgO62+LfyGYg7PR0/uOx1boj2cQvIBPKv4/OYyEnKVydkbwAjpoIcJ14ebQK3w7HBNW0fw64XYEz2FlHIJgNs7CcDyNIAiCKRiDYRiEjj7ayQimYktFtaQPuYi/P4tp+As2M78dEczE/lgadyGYhB1V38HYGV3UnFxIQg5QOXV4GMG3tBBhYkjoHv4cEjZWG7rgbgRP4quYjSAIgjdxLQ7Dxmjr46vDWQimYKCiktKWfI9MIiGT+O430dZ/qsMxCILT0QmXIJiN/1Fd38YtmIiN1JT8hYRsqrK+iuBptFXjQrvQEGaGuvCvkNBX7eiOhxDMwCxMw/UYigGo1zTqcC6Ct7GhohKyIXmQhIRcT1by0fbHTARXoQuOQQOC4WirurqinZqRdmQGmUOWUFlt8ASCr6lxYbmQ8LJ3hUkhoZva0hv/RDAdnVROG1yB4DWso2gq6UFOJ7NJyNPk8z6egXgdwV+wIr6CaQj+iG4qqzf6qUn5BAl5UnXsj+DvqFfDwroh4bHQPjSEmaFO7TkCwbUqrx1uQPAi+io+SH5EPq9RLiJ9ySXkBI1yC3mQhMwgJ5BOFk4//APBS9gQm+M1BI9iJU1nOQzG6RiLBlytJmUvEnKl6miHZxF8UQ0LW4aEO8JyIeFltWkUgiGqoxNuQ/AcVlb8NzmG7KxRfk/6kVHkNrKuufIA2YHcSfpbdEviDgSTsTNWw+MIxmMjC2d1fAMX4hkEQRBMweVqUn5OQn6ser6D4GHUqVHhyyFhZFgvJPxN7WmPSQhWUj2dcTeCJ7GsylgWx+FkrKllyTHkt+S75LvkEdKPjCKbkFtIHXlA0+uACxHMxlD0xK0IpuCLPlpfDMFFeBZBEASTMRrHYBA6qFm3XMjEyWQX1dMR4xFsq0aFA0LC8LBlSLhD7dkGwV9UX3eMRfAolrLo+mAwTsdYNCAIJqCPliPHkKFkC7IFuZX0I6NIL3IM2Y88oHIOxRwEv0EnnIWgAcd4Xxv0xxCMwOsIgiB4FddjKAagXsvxMhpYeVXVNRTBnWpU+FFIODHsFhJGqj2nIThR8+iFcQgeQFcfz1r4Fi7GcwiCIJiEB/EWgsewtJYhx5CdNcrvST8yivQiHcld5M8qazdMRfAndMdQzEFwF/6ISQiCIHgeF2MI1tJyLYvgLdSprq6YgGCgGrQxx+7CI3tz4BHsdRm3X8pxas8/EWyu+SyPpxHcgy4+WF8MwUV4HkEQBJMwGkMxEO29pwceQfAX9FT7cjTZUaNcQlYjo0gvc2U78ojK2wyvIvgbuuFLmIlnEQRP4yIMQX+tx7YI7tQ8jkUwVm26EMHX8SMEJ6op09dg1CNscyPaaF4r4VkEo9EJbTAAh2IE3kAQBMEruB5DMQD1PlhvPI7gPiyhZUtvsgfZSnWsgEfwW+9ZEbMwE0OwnNbr+wjO0DzWQgOCVdSePyDYEacgOExNyWEk5GK1YU28gmAmpiAIguAZXIhvYA0f3wr4F4Jb0VHLlf1IyFWqpxvaes/xCC7T+l2C4JuqrwfuRTANbdSe+xFsigsR7KOm5FYS8lW14zOYjSB4GhdhCFbVNFbDSwhuQgctU1YjIa+TOtXVFi8h+LTW71EEn1JdS+IBBM9iM7XpKQT98AcEO6oZ6UZmkNlkKbVlWRyMNVTOmngFwVVoq2XK8yRkHdW1O4JxqNO6tccMzEZn1bMsHkXwD6yodr2FoCceQLCJmpEvk5C71J461bE+JiC4EPVanlxGQg5UXbcjOEjrtwWC11XPSvgngnHoY3598QXUaX5t0YBZOBTPIOinZuR8EjJUbVkaw1TPppiM4EwtTw4kIZepnrXQgMnopvXbBEFwPz6rstbA8wjGYmnz2x8NmIQ/Y2vNaxkEb+I+zEHQQ01IPXmZhKyr9rRVXVtjGoJTtSxZh4SMVz2nIzjb4uM8TEAQXIN1NL218RKCu9HN/HbHTATTEQQ3Yn3NYy8EwRQEDThSTcjGJOQ5xf+zLaYj+LGWI3XkVRKymsrrjAkINrB46YKhmIhgDkZgFU1jAF5HcBuWML+vYRaCYeiMoXgLQQNGoK/q2A53IQgaEEzHDEzB79Fes8pa5BxyjNqyA8agXvMYjNkIhmg5chWZwT++pvK+ieAei6+lMQzTEczA6ehh4Q3ERATXo6P5HYg5CIaZ31I4BdMRTMcv+dRSml4ddsIDCIKJGIZ+uARvYAYmYw7+jD6qLmeTLc2VJcmxaktbrK957YOn0Nd7BuKrWMV7Pud9nbGZ5rfVEDpNxe9U3lgEeylWxnDMQfAmhqKTj2dLTEZwOdqZ35EIGvA9H2xFDMds6t9kwngyjHS1yNKW7EXHuxEEL+NIdDW/TXAH3sFETMWT+Jyqyv3kdtKBLEeuUfw3HbznfJyGr+JSdMfD3rcyRqkBGyJ4SmVtguB1dFT8PxvhVgTBCxiCNj7ajpiG4GK0Nb+hCObgmxbM+hx1NgkJeYl8i7T1saU92Yc8QcL+d+A5HIpOPtzeGIfpmITX8UNVkzFkX/JTshy5Ru34PkbiE2rD6rjNf3rY+1bGKDWgDd5CsKLKuQDByYr/ZhAeQhD8HYN9sK9gJoIzUe99dfglgtn4uo8tm5MxJCTkH2QwqfOR0oV8l7xIQkKe4NV90M6C64xf4SVMxhT8Hu1VRHqSb5H+ZAypI7eSgeQataMX9saqasN2+JX/9ApGYiRuxCg14g8I9lAZPfAOGrC64oPUYTCeQhDci0+b316YhWCY+dXhDAQz8CWLJDuRJ0lIyANkS/J5srq5Ukd2IV3JoWQ8CQl5lOxD2lh4K+I6TME0/B3LaxLpQHYiF5F3SMhpZIy5sj65m1yj+CADMMJ/etj7VsYoNeIHCM5SGYcjuFGxINphCF5BEIzGujgYcxD81Pza4AIE72A7TSLtyEHkFRLyV3ITuZXUk3pyLxlDQkLuI18gdZrOdvgbpmEiPmehpJ5sRc4jb5OQkNnkZvIlMkajnEauURvOxCkYqHa0wYPYHh3xKe952PtWxijvWR9fRBvNZHMEj2l6dXgCwU6Kj6M7TsQ7CBoQNOAQ82uPkQgmY2tNLkuQn5BtyE3kGPJtUk/uJXuQW8nWKqcNfoSpmIVjLbj16X8ceZGEhIT8mXyXLKtR1tQonclqZDuymea1Po7GD9SWpXECLsHRaI+jvW9JfBtt8XnsiV00k3Z4Bw3orWltg+B5tFEsjF44F0EDTjG/zrgJwVvYVMXlJrIkuYcsR+5VXT0wCjPxANr771bAoXgIQZj6JHmODCNrWiDZlswhL5DeikWxEq7CSprRHQiux9H4NgZjK6yHPujg47sawY8Ui2ptLGN+XXALglexvqrITaQr2ZKcT+7VPNbGM3gDq3jPkjgAd6EBQfAazuA7n/KxpS25k4TcRtqornpciUPRT8tVj6XxSXxLM2mLJ/A8giAIgiAIJuNZ/Bl/xCU4HT/BQfgKtsb6GICZmIk+iqbWA/chGI/+qiY3ka7mykXkXs3rALyCcZiBIHgHl2JHtLNIsgx5iYScoLraYFf8Fs+jp5apLQ7EUPTUTH6MYDx+gBNwNkbidjyK8ZiBIAiCIAiCIAiCGbhJ0dTWwWMInsFqqir7kw7myrLkIM3vQATBGAxBV00qnyWzSAP5ourZGkMxGHXYGd28by/FAvkkZmAOtvLRumJVfAo7YC8ciuNwJn6P2/BXvIFZeEDR1J5B8A8sr+qyCfkXOVXtGIzgURWVoSRkAumr8r6Hi7AZDsOncTVW8b6HFB+pAx5FcCpWwDVYWdPogtcRfFrRlKYiOESzyBAScpHasTmCe1RU6si1JEy7l1U6qqzH0cn8rsYq3veQ4iP9L4LH0Rl/QnCpRbca1sIxCP6oaEpnIrhVs8iZJORwtWMAgrEqLj345z10fxTDVU49HvefrsaNGImReEXxoTbHbMzCJjgYwetYxqLZDbNwI5bEJAQbKZpKN7yFYAtVlzEkZJDasS6Cx1THJ/AOgv1UzuPoYH5XYxXve0jxgbrgSQTHoS8mI9jNolsSkxAMwM8RXKVoSiciuF5VpY5MJCG91Y5+CP6pevZCMA0bqIyh+C3WxeewKq7GKt73kPf0x2FYVdHobASPoCPuQnCRpvMLBFdiGUxFA9ZVNJWlMBnBhqomfUnIeLVlRQTPq65zEfwT3VXGjjge30Uv7Ibu3vcN7xmATjhdMdcgNGA61sMPELyInprOspiKOeiPMxFcpGhKpyK4QtXkiyTkj2pLbwSvqa6OGIvgOtRpPvX4JfZU6I7nEXwf62AaGrCDpnc2gguxImZgNvopmspymIbZWFNV5Kck5GS1pRuCiapvZbyB4EjNZz10wK8VLkFwDzpiLIIzVcZKmInZ6IffIThH0ZSGIzhfVfzuVJ5/kJe+orZ0QDBd89gFDXgLHTSPjXEoVrGY2wXBFKyOExE8jSVUzoUIzkY/zMZ0LK9oKn0xCzOxisp7GkF/taUODQjqVN/3EMxCB0Wz6YVXEByIAZiJOfiMyloLczAdy2MEglMUTekSBL9WWV3RgOlop/ZMR9BBda2GyQj2VzSrkQj+hC74B4JhquNKBL/A+mjAO+ilaCprYw6moY/K2QLBQ2rTRATdVU897kZwgaJZ7YfgLayIXyEYh46qY300YAp64QYExyua0tUI/lflfBvB+WrTawh6q56jELyInopmswImINgTW6MBs7CR6voDguOwCYK30UPRVDZAA6ZgaZVxDoLvqk3PI1hRdayPGWjA9opmU4+nEYxCdzyH4Eeqb1MEb6MHbkPwQ0VTugnBMSrjPgRbqU3/RNBP5bXHXxGcoWhWGyBowDL4LCbhfrTVPG5H8AMMQvAGllA0lc0QvImumlY9JiNYWm16DMG6Ku9nCJ7GEopmtRrmoAEbes+qWE3z2QbB6+iCexAcqmhKdyH4voXXEWtjR3wHp+ERBK+oXWMRDFBZm2E25uDTiprwSwRXqh33IjgEOyN4A90UTWU7BK+gkw/WEwMwGEMxHKPxNOYgCIIgCM5Vu+5BsLnK6YwnEJykqBnLYirmoL/asAv+hM1Rh2kIvqVoSn9GcDF2wMH4JUbhr5iCIAiCIAhm4p+4GWfj+9gDX1bbbkOwtco5E8E4dFTUlLMRXKD2bIo5CD6jaErfQRAEQRAEwQSMxQgMwxAMQl+09eHWwRC151kEd2BtTe9zaMAMrK+oOSthJmZiVbWjM55AcLqiqbXFxZiOOzEcQzEYA9DDouuu9vwaQRA8g+EYjCUsmu54DsEPFDXrQgRnqR1nIBiHjoqWbDd0Uhva4Je4FK8hCIIpuBZDsIKP7yIE96KNomathTmYjj6a39ZowEwMULRkXXEL+qg99RiAoRiDBgRBMA7DMAhtfbhdELyDNRQ1bySCn2te3fEcgqMUrU1vtas39sEITEQQBG9gBPZBT/NbGq8gOFjRInwSDZiCpTWfCxCMRTtFa3IibtMytMVADMPfEQTBbIzFMdgU1yO4BXWKFuNGBMdqHjsjeAdrKlqbw7C0lmlNHI5bMRNBEATvYEVFi7IpgrfRXXUtjVcQfEfRmtXhVHxVy9QFO2E4pmMqfqFoke5EMFR1XYngVtQpWrNf4B700PK1RSdFi7UtglfRWXXsjWAiVla0dutiCe+pxyHooCiayYMIvqPylscEBPsqFidtcQluwxKaUFgmHBZ+Ejb1rrBM2Mk8Yd2wmWKx90UEz6O99yyFb2JXfAb9sSzaWXh1uBHBtYrFzXdxI9bVhMKS4cEwKKwXrglfDJ8M55sn7BmOUCz26vA3BPt7z6cQBEEQBG/jn7gff8BFOBU/woH4MrbEemjrfQcheB3LKhY37fBZBDfhRIzACIzACIzACIxow+/DRWF4GB6Gh+FheBgehocjwsHhO+YJfcLt4ZPhfPOEPcMRiuJdX0PwFNpidZyLUbgL4/AKZiEIgiAIgiAIgt7e0xeTEQxWLK5OQnAq/o4gCIIgSDtmhoSEhISEhISE28JJYRf/JjwWPhmeCVeGK8P94QhF8a42eBrB/dgVn0F/LIu23tcDq2NT7Ih98D2cgHNwFe7A39AW9bgTwcWKxdlfEQzC7xFch8EYjMEYjMHt2S3sHYaEIWFIGBKGhCFhSPhCOCB8zzxh5XBz+GQ43zxhz3CEopjnAgRBEARBMA3jMQ5jMAKn4xgcin2wEwaiLzp4z/EIXsKSisXVimjAZHTA3xFsaRGEbuGBsFPYKNwQtgufDOebJ+wZjlAU89ThJ7gPo3AXxuEVzEIQBEEQBEEQBEEwDUGwvWJxdiCCq7AqgrfRziIKS4Vvhx+E9b0r9ArbmCesGQYoigXUCX3QHwMxGIfiGJyOi3A9xuBpzEDQgNGKxd31CPbH/yD4vaJoRXpjTcXiriPeQQP64I8I9lEURdHKfB7BWHTBNMzBMoqiKFqTMzhmTe7pwdHYGcF9iqIoWpvwTEj41PWctAN3rMoRiqIoWpPQPyS8GtqEF0LCBoqiKFqTcGRI+F34ZEgYH+oURVG0JuHOkLBb+FFI+I2iKIrWJHQPM8PM0CPcGxJ2URRF0ZqEr4SE28JSYXaYHroqiqJoTcJFIeHwsHdIuElRFEVrEurDqyFhrXBFSPiOoiiK1iasFb4d6sKrIaGfoiiK1iR0D4eHn4ddQ/ewo6IoitYktAv3hB3DquGUcJSiKIrWJmwXTjNPaBvGKYqiaG3CvuEI/yY8GuoVRVG0JuGzYbh5QqfwiKIoitYm1IWbw5Cwebgk7K8oiqI1Cu3DHuGwsImiqJL/A14GaPKb5JzXAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE4OjA3OjI2KzAwOjAwIB8xYAAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxODowNzoyNiswMDowMFFCidwAAAaTelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAAFiFfVhLkh23EdzPKfoC0wHUF1h4IZKyQuHQMMKmdQfvff9wJvoR3ZRKnuErvsHUq876ZRXm7eDXP7/84z//PfaXfHl7O472f/7NOY/ftbX29tvBN8enn3/59eP4/O2nT99PPn/998e3fx05j+H4DL5/1P3p29ffvp/04+vRzx4qacd7njElZj/a2dbX/VE5PkPRh0+V4z1OcbWYhaLCop4Niq0vxdCOj/xZ0WCxne5UPd4dIHKIF4p+fOB0SMvQ412JUVsWigGLcvbULknFZqoZhWICo5wyoIlHwy3LlMqZAYt6Wu+IOC2O2drUQnECowGjtbEerSNaVhg78nP4KRZpwWdPi+EVyM7c2CkdgYHfiEB0/FBpMjlxZjPLsfxBkvCu0FTgzBPx6Zq02d1a/XRbNtuUFobfT+0+SpO+YIYi2Eyz52hwslCMZdG7pQjCr9lGrZgA6aflDJsMv4e5VYpMj51N+sRn9OwNKS2dmasofU7xgTKO0PCq1KStEpojhhlM9zFcynbowIhAt9Z1wPQcMF1hFFllniMN3Sh49FSvSk10taKnCYz3U6eIlhiZGaQue59tmZTwUdWasHNQDibmeCZstviL7o7LZih6cNW3TI/SJntn1eLr9ymqpT9MDh6u3tBdfCezqVQlJOyedzmHZh+yEI/ps3Ke9LYaETWEDAKyNZ1e+aTsH6iawVbA+6aOuq80mSMwkMqcY7VFenoJVdlAYDXUTwvagkdo0ErTLqMT0W+CxyfaWEub7KB3g9MghUYGkzZrmytNcc5MS6Ye1TlHRa6aF85scKWjkoHTW9VtuvI0kHEQUqLvGujOK45TdhE0RegJWxkkU9ayrSzNE7zZO5/eWrRRPd369XQL66OzmB1FUPluryQhMUHmRJhmpJdGlaoJ6mxKQhROmbr0zC7VZBY7y2Xq6tRC1S9VTDNBbQGKjDlqAHGpzhzTknlANTUpp2BeobI0n0ZVA6NoVaZ2dRRIG8SA3gYC1KBFGa15mZWM0cbqGEF5VwwFDz6oGtowtRgtkmNUYP2VLXWVWI0Ktv+LoS1Xo/YGml9WZ3jvpVW9mAIcCUZbEz4zS7f8O/c1DK5lNQwLS1Wt7pdVA5mjdpBYFEM5Pv1FfixmjDjkVTTKBcPzsukpCRoO8n+WucKY+bhmNjQ6Ri7Wl5DS5rxsoqgHHjoxcjNLQot22ZxqbFAUgvVkLxSqHE+MvkWfy6jbzKpV45pPw0E69B228ZFKUdcGOBXrisB1bFZYxCpFW0uTYD4YLUaAoqveC2aITcLxhNbH/1quGMEEwYe2SBmhUkzTKufB/DAuAZJoRItVsZzfMTht4ffI2deSgf2mtsnh1NeoV6XCxBAtV7tsy5/EPEL+WJto/7Lpsy9N7TFQu6D+DvKzqjlTlutIogxbvcnFu9TUy3c4rL52UOsNa0mlamsHTWvc1PB4B+ZymU9fGxZQCoH6ObCCWulSXKsy9slc5KigvlEFNPNqN5uzI6BkBmx65cTJ1w7hAytEEmnj9lgGf15WsV0NMgMAYJiWy87PH19+uANdt6JPXz++3Lci4eu++/BA7xsORhovRH//5W/70Nah33eWjlfcNxO0zJH3/aPjahHLQr/vGjyc942i8/W8OAhF3x8AmfV1soF2IqXQH013Qqawx3ovFH0j7oTMkw0aY7gvsXF3AqcYjxVcKPrG3QlcruX8iUHadS73CfFDyB1o3AuW2GEVIufJRi6MNIRs5ELkELKRC+NNsZELkYM8JH5MG/lknW/8svCDEp47pxxroXysln2dbOTKyEPoXSVEDqEbuTLmELqRK5FjqeOu+ESl8Trf+JX4IXRHXhl53j02ciVynNhzD+sUtpFbv3DaH8uX+CHsPlHUM8XGzxvREhs/ViJbYkcerWdLbORYcGyJjRxTwZbYyLGtGIU/lxKj8I3c+5UX3zF3YobwjZlTkcI3Zn9VC7eBZzX6alDH7H9sAZ3CN3JnzCF8I3fGHMI3cl6rKOI5pa+T/ax41Xls5EHkELGRB5FDxEYednVf/AF5EDlE3ORC5BCxkWMOCkVs5ME658lGHvPiinzOr07B6fSsjeyv840/iR8ibx1ddJUbfhI+RO5iSQKHyA08V8gxEB6joVPkxp3EDZEbdxK3sT02cbareu5KHYuL+6Oax6oVNOC2PFbEcXL/sWdBjuNWWYhh+Dk5nnOCP3//yxvev/0PsX2sVFfFn8EAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAA2B6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAOI2FVLuKHEkQ/JUzd6GmyPdDi+BgzpA1ss4SstY/V44+XpHVg0CcQON0d05UZmRkZN3vX+5/f/r6cn+9no/7y8fPz/f7/f7yeMXnzyCijOiDf0U9Pg7w8QfcO79/+e/T13d5nx/L/+Dz9eDX5xOBc5B/+/35r+8vTFtUbN10G1P3euvNnVLrJlvF1dZb7tR2n0hktUxEOarXzTZzMTCxk8xwire34jgwLIm/brTZjTwGRC0Ui3YrewFkO9RUEfEs4oE4W8pC8aTiSQM25gjgoYcfUbouxtFKlEYLFifQjV4QAAeiSdoUkXkgVdkLTaIwzvi27PAJeCA7iJAwWtPNJMNM0UdLTJlQIN9kd0XZQstVLoMQj/TlQBgNEbQV5SvAPQJUUdVZqABR4xhqwwyiKJK1+EASTdT0hyMaB5ImgsLaIrreIGAyNx2MhCMxVDawOXlIky9QedfUwqngA/IUaBlTNK9MFXjllbswCD2gsIDQkLUT3QyowXYEhbCcoARzsIE+MI66V30MZdRROq3iVGiWjOokDWH09B+M14mlqNZFXZ0upwjIPxskjCWOw0zigkEY7jEmRjhDHBaU1IPC7HhalF1o/ySz6iON7krB4JDVCL7lEzPrYUvqMqkwEGm4fUp7+vgVMbzEsTl3HClyC5OeXXC/uBbo66Qfdasm1Ggdlc7GhI/REZIcVYcNPHkawh6IIr1vCnj8oCwNpG8BofXkGrujkQmBFckJsY4RcFCq6+KVxRyTvjVt0sfUPruF7Zv/pqHGlNB1YhrwJ7bVyjAONCg0e4xTGDqGAR1dzmQLy2Q8EexUymHJrFAbK0JBF4Yk0QE6MWY/EUiOkQ/rrDiZE2uaOAU+PhsnNqJCt4bhYlZOwDPXcSXLzNOgltEZutaphaEYNmZuGsctlAfToyjaK5yyWUTDBZMTgcXsLC946VG/CfmwvJx6RQj3TU1EKnFbzBwtn24VyjigwE1ybZV1MwY/njs3xlmrsqyhhFV+7lUrgnEoxHgU2eCY8sMTXda1/AjozHYu1rmX8JfCkBgoKo7vwa8uR0gM4df17d8PmNuqXYthhVgC4XDJFJT59s8H9LEUVX2ZwOXLMYJeCXHk+w9Wj1tCUKkAdQAAAABJRU5ErkJggg==) |
관련 화합물
힐 시스템의 공식은 C53H76N14O12
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |