몰 질량 of Silver molybdate (Ag2MoO4) is 375.6940 g/mol
Ag2MoO4 중량과 몰 사이의 변환
다음 물질의 원소 조성 Ag2MoO4
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
은 | Ag | 107.8682 | 2 | 57.4234 | 몰리브데넘 | Mo | 95.96 | 1 | 25.5421 | 산소 | O | 15.9994 | 4 | 17.0345 |
몰질량을 단계별로 계산하기 |
---|
먼저 Ag2MoO4에 있는 각 원자의 수를 계산합니다.
Ag: 2, Mo: 1, O: 4
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
Ag: 107.8682, Mo: 95.96, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (Ag2MoO4) = ∑ Counti * Weighti =
Count(Ag) * Weight(Ag) + Count(Mo) * Weight(Mo) + Count(O) * Weight(O) =
2 * 107.8682 + 1 * 95.96 + 4 * 15.9994 =
375.6940 g/mol
|
화학 구조 |
---|
![Ag2MoO4 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETQfvA4krgAAAAZiS0dEAP8A/wD/oL2nkwAAIUFJREFUeNrtnXe4FNX5xz/3AlfpLREBIYCg0VgpBsUWxWhiRIliTOwhYosSY6xoYq+JHWsS/KGxYIsVFdGoYAwi2NCg2FAUQ4mi9PL+/pizuXMPs3t3d+bend37/TzPPA/sznzv7vue+e7MnHPeA0Ikx3DgJGCAQiGEqFSeAww4S6EQQuRiBLDY2+6V0QkhKomHnVmEt1XAt2R0QohKoAOwIsLoDDheRieEqAR+mcXkDJiSss/aC9jK26a5z3pNxHvdlF4hBMBTIWNbC9wX+v86oE+KPuszOUw5artZ6RVCfBtYHTKGZ4Dve2YxJkWf93Jgkrctdp/zvYj3RivFQogTPFM7xr0+O/TaOyn/DnpGJ4TIyQvU7WXt7F4/3zPA/gn8rd7A4cDvgEuB8wgG+g4HugCtgKFu21lGJ4RIgm4Ez+QyZvZY6L2+ntH9qci/0cJdJc6m/udpn4f+/ZGMTgiRBKd6RnO49/4rofc+A5oVcQX3BoV1HsjohBCJMi1kLMuB9t77p3jms1cB2t8FFnjHrwWmAhe7W9ZTgYuAu4EPZHRCiKTZlGDoSMZYHojYpyuwJrTP7XlqtwFmecb1FjConuM+LtLoqt3VZpXSKoQIc45nRAdn2W9SaJ8lBB0G9fH7CJPrlMdxxRqdEEJE8mbIVJYCrbPsd5RnWj+rR7eld8u6Ftguz88koxNCJMYWnnndlWPfdsCy0L6P1KP9Q0/7sQI+l4xOCJEYF3pmtH89+08g/4omF3naI2V0QohS8G7IUJa5K7w+ObZfe+Z1Qg7t+7x9t5XRCSEam0EUN64t34omk719u8johBCNzR8TMLpcFU1e9vZtJ6MTQjQmVc5ALIHtnCx/Y5Ku6IQQpWRn1q/V1rGAbQ71VzSZ4P2NQlbmktEJIWIz1jOhIQUef0EeJuYPFh6Vp3YzauvKyeiEEEXRDJgfMpJPCKZOFUI/z8SuitjHH0f3dJ7a+1P8XFchhIg0oD8WqTOd3BVNWrjXwx0Xu9aj2Y71yzjJ6IQQBfMXz0gGFamTT0WTs7x9vgC2z6K3CfAS8co0CSEENcCikIm8T/GVPvKpaNLCu/IzgnUp/gYcDQwjGIQ8DviG+PXohBBivedfl8TUy6eiSXfgNfIfrjIe+FRGJ4QolrsoflpWFEeRX0WTts5Ul+YwuK8J1pCoRsNLhBAx2BcY4bafJqDXJqQ3guzP3zK0I1gA5zJ3u3oXcDXwC6BDaD8ZnRCi4pkbMroPFA4hRCXy35DRzVA4hBCVRnvqrmHxtEIihKg0hlG3k+IihUQIkXZ2I/8pZs0IlkEMG93OCqEQIs0McGb1HvBboEeOfbsRLLUYNrmpCqEQIu3cy/qFOucADwO3AdcBfyWoVLzS2/dLgtLuQgiRWqoICgYsofBinh8BgxVCIUS50I5gXutDwFf1GNxs4DSCnlchhChbehNUOjmYoBjnwcCeFFZqXQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQogIwaKMoCCEqxdCaGexmcInBvwzmGaw0MIPVBp8bzDS4ymAfgw0UNSFEOZncUIPXnKnlu801GGXQTBEUQqTZ4NobPFqgwfnbVIOuiqYQIo0m18bdovrG9R+DWw0OMtjJYHODwQbDDca6W1r/mPdkdkKINBrdXzyzWmtwmUHbeo5rafB799wufPwkgypFVgiRFpP7qWdSqw0OK1BjeKizIrONVnSFEGkwuSqDtz2DurBIrd95OosMWinKQohSG91Qz5w+LHaoiBuS4vfW/lJRFkKU2uju9Izp3Jh6ozy95xVlIUSpje5Dz5j6xdRr73VMLDeoUaSFEKUyua6eyS1OoqfU4E1PdwdFWwhRKqPbwzOk5xLSvcPTPUrRFkKUyugO9AzpnoR0r/R0T1G0hRClMrqRniHdmpDuuZ7u+Yq2EKJURneiZ0jXJ6Trj6e7UtEWQpTK6A73DOmvCeme7+mOUbSFEKUyumGeId2fkO7Vnu7xirYQolRGt5NnSNMS0n3Q0z1Y0RZClMroWkcM7m2egO5HntH1VbSFEKU0u9c9UxoUU6+7wbqQ3gKVaxJClNrorveM7pqYemd6eg8oykKIUhvdtp4xLTDoWKRWS4MPPL0fKspCiDSY3YueOd1WpM7Fns6/ddsqhEiL0e1osCZOuSaDQyM09lV0hRBpMruLIha5GWewcT3HdTC4xq0xkfh0MiGESNLoWhjcFWF23xjcb/Argx8ZDDDYy+BIV7RzccQxE1VCXQiRVrOrNrjKGx5S6Ha7QQtFUwiRdsMbZPBcgQb3pp7JCSHK0fC2MTjN4GmDd9yqXmbwlcFsZ4bnGAwspHfVYB+DJw1aKspCiEq9PZ6ZxEI8QgiRZrMb4p4DLjPoqYgIISrV7Ca4q7o7FQ0hRKUaXQ+Dpe7KbhdFRAhRqWZ3gbuqe9WgWhERQlSi0bU0+FhLIgoh0m5WVXGGiRgc5oxuvkE7RVQIkTaT+57BVIObYhplpnrKpYqqECJtRvddg1Wuasm2MXT6u6IAKw36KbIV1UY2MOhmsIkGiItybsjXuKuxZ2PqjHM6DymqZX+Vf5abNfNVliIR/zQ4z2CgIibKpWF3dFWJzeDAGDpdQieGqhKXXzvY3GB8RLmu+rZJBgMUQVEOjfx412g/MNgwhs5ZTmdWEquRiUbL/zEGK2JUvFlrcLYiKdLe0JuFVhM7O4ZOjcG7TudERbYscn9ihHGtNrjP4AiDrQ26uiv2rQwOMfibex7rH3eJIirS3uB/4Brr1wbdYugMdzqLDTorsqnO+UDXGRU2q6kG38vj2H4Gk71j1xn8OMcxZxtcWs92vDIjGrrhP+Aa7P/F1HnK6VynqKY21xu6xY/CRvVEIT2r7gr+IU9jfrYfOIMv8rgNflnZEQ3d+HsbLHe/zN+PobOlu/1ZY7C1IpvKXI/0DOYzgw5F6LQyeM/TOifLvpcZ3FjPdpqyIxrjBMgseTg9zvxVg7FO5xlFNZV5nuGZ089jaP3Y0/pU5fhF2k+ANgbzXIM9PIZOJ4OFTmeYIpuqHH/PM6aFBjUx9KoM3vc091akRdpPhCNdY/08zvxVg5OdzhyDDRTZ1OT3GM+U/pKA5iWe5vmKtEj7iVBl8LJrsBfF0Glu8IbTOV2RTU1+x3mmdFwCmsM9zacVaVEOJ8Ng1ymxwqBvDJ09XcNfYtBVkU1Fbqd4pjQkAc3enuZHirQolxPiDtdo74up84jT+bOimoq8zvJMabMENFt7ml8p0qJcTojubgCxGewVQ2dTd2W41mCQIlvyvM7zTKlrQrqrvcHDmgYoyuakOMc13LfiNFyDK5zOS4WsISsaJKcLPKPrnJDuUk+3laItyuWk2NBN9o/10NqgrRuUGmvMlkgkp3M8Q/pOAprN3VVcRnOFIi3K7cQ4yDXeRQadYuhkRuN/YtBakS1ZPqd7Rrd1ApqdPM3PFWlRjifHc64BXxVDo3oV/ONmmNwqyzQh0Si5fNIzpWEJaA70NF9XpEU5nhzfcw+bV+dT3SIHOwLrgGUkcMskisrlxZ4p/SEBzVFJD0IWolQnyM2ZqrIxpe4O5LhbUS1JHof5VYIT0LzD0xylSItyPUE6ued0lqvuWB5sAnzjzG5XRbbR89jZK5y5JmYNwrZuLYnw0BItkiTK+iQ5xTXm92LOXz3PGd0MoJki2+h5vMu7Ars8htZpmv4lKu0Eae7G1JnBb2NItSSYJmTASEW2QfPVKuL1IZ45rTLYpgj93t7VnKrViIo5efbKTPMx2DiG1CHO6L4A2iuyiedpD1dU4Y9Z3r/bHxJSSEeTQY/QGiH/u5rTgHBRSSfR4wa2NH659Oed2V2hqCaWm36h+cWZVdlqIvbr5Ipkho1qkVsVrlkO/SqDw0IDwMPHdlcGRCWdTJs/DpPbBpO3t4shtT2wFlhJApPLm3hOWruFpVeEFps+L9ezVINtIwwrU1r9NoMTDA5wPbWjDG4w+Chi/0UGOykLohK5yl2NTSHe7cqfnc4jCmlRBlfllib8PNTrOT7fxwruOdubMdZ1nWOwpTIhKpV2BFN9DBgRQ2cj4Euns4/CWpDJ7WDwz5Dp/MuCQdmF6jR3V2yfFWBwC10vvKpHi4rnWGdQc4lXreJ0p/M2WlglH2Pq7q7a1oUWpDkibkeAW8x8iMGFbvnD6QZznf5Mg4kGl7t1gGuUCdFUqAamO5M6N4ZODTDb6ZyssGY1opYGZ4TqBC5zywi2UXSEaFiGUDt/tWcMnWHO6BYD31JY1zO5/Qw+DN06PmrQS5ERovGY4Ezqzpg6E53OWIX0fwbX3+CFkMHNMNhFkRGi8ekBLHVXdjvH0NkCWAWsoYiR+hVmcJ0NrnVzUTMP/0ebpswJUVIudFdjrxI8uyuW65zO5CZqcC2coX0Zmp51rWn2iBCpoBXwsTOpo2LodAQWOJ3hTczkhnqrdE3SGDUh0sdhzqDmE4yzK5YTnc77wIZNwOA2z0yrc9u/DfZVcxIinVQBLzqTujSGTjOCctwGnFnBBtfRDQ/J1Idb7IaPaIyaECmnP7XzV+MUYNzDGd3XxCgMmVKDq3YDfL9wBrfWDQDeSM1HiPLhdmdSD8bUecjpjKuUwCwIZhW8EbpNnZzESlxCiManC0FlEwN+GEOnD7CcYNjKDmUekx7A+FHwsjO4uQZHqKkIUd6c5YxuFtA8hs6lTueflGdRx7buO6zI3Iq/GQwf2VBNRIjypwZ4153cJ8TQaQPMczqHltH3ryKo6pIZcrOOYAZJTzUNISqL4e4kXwR0jqFzlNP5FGhdBt97EDDVfWYDXkGFKYWoaJ5yJ/u1MTSqgX85nQtS/F27AbcQ9DqbuxIdRbyZIkKIMmBLYLXb4vQu7gQ8C2yb0tv00cASZ3ArnbG3VfqFaDqMdQbwTAV+t/2AD0K3qY8CvZVyIZoenYCFzggqZd3P7YB/hAzubWBvpVqIps3JzhDmUN7rDHRyt6VrqO1oGY3KJwkhCMbSvenM4bQy/PwtnKH9132HVQQdD6qGLISow57OJJYAXcvocw8F3grdpk6igFXthRBNj0ecWfy5DD7rZgSdCxmDexf4iVIoypB7gPvQQvGJ0xMY4G2tCSqarCQYa7ZpAXqtI/QaapZBB+Ayaqdt/Rc4A61h2tTZOKINdiyTz54Z26mB6wlzf+hKKLOd6N77NfCDAvVOitC7N+HPXE0w0f4Lp78WGE9QpECIqDZ9uYyuaTM9olG8EENvSoTetAQ/7+7AayHtfxAMIRECgsHfyyLa4KeUR4+7jK6BWBTRKNYB3ylCq4c71tdbkNAt9n0hzQ+Bg5Q+4XF4RPvLbLvL6Jrur1+2RnFqEXq/y6EXd5rVtgRj4pYC5wEtlT4RwWOhNreW2nGUaexYO5agYlB4y1woXBnxXj+ltzi2yWFMxdxuTsuhl0R13qOB7kqbyEJHgg608GONp0P//yplP5Crc5wvUdsvlOLi2N8L5HPe/wv5Benj3bb+w9PaT+EWDcwor80dDxzpvXZgij7v2cC53pY5h26NeE9jQotktNcIfuL9yowpQGtM6Lg1wAGe9kkKt2hgJnttsIt7ZLI09PqDKf8OekbXAFztmVEXghJLmf+/UYDWG6HjniGYURHW/lMRn68ZsCtBbbv73VXiFOBh4Hp3RdpGaRQEY+fCz+OeCr13b+j1lcQrLou7shoN3AFMJKjB+CRwF3A+wforuxOM6TyDwgavy+gagL+HGsAygrLiJ3gGlc/l8ne9Y45zWnF+SYcTVBqp77nFQoI5uc2VTt2dhLZfht4b5r13TJF/Y3dq10MuZBsvoystr4eSMcu91sX7ZcynUvD51O3pysyPfSf0+ow8P1MVQa9qoY1pEtBOKW2yvORdtXUKvdeC2vJjmefHhVDlrszWFtEuZXQp4MtQMh4Pvf586PU5eeiEr7yeDb0+MfT6l3l+pjMjGsozBOtRDCZYeHs4wRqyfq/Vw5TnCmQiHj2p2xH2SMQ+t1B3nGivAvQvj2iTr7s7id0IBqzvCPzYGeLjMYzuefd4ZiulNRk6ecm4IfSeP41rQA6d7YiePgZwo/deh3o+0zYEZZXCD5SPzrH/Dqw/4PlXSm2T4wyvDUStQrert8+ZeWrv75noOmdwudYX6RXD6ETCDCD7AOGNvcv0K3LoXOrdtnYLvXe69zfqm6o13tv/D3l8jx96x7yPims2NWaG8r88yyOMKoLZNP6jmlxUs/5z4nxqNMroUsSB5B5fFH7oOjfHLeGc0H7Pe++N8P7G8Byfpy11B3suJP8qJE96f2cvpbfJsLmX+wk59r3M27e+BZz2Zf1B9PmsFCejSxH+dK3+3vu/8d4fEqHxfXKPlRvovX9Kjs8z1Nu3kOk6/vzGC5XeJsN55D8geEtv3yvq0b7e2//wPD+TjC5F3OAlw6/XtYn3bOK6CI2rvGcXPbz3v+X9jWsLeM5ybIxf9YlKb5NhVijvS6h/ild4vOe8eh5zzGT9caYyujIjPPk5W49ouMv+c69RVBOUvsm8PyWLxhJy94Zl+KPXOApZqavGO3a60tsk2NbL+5sE08Bybf5jjlz1FsMdXfML+FwyupT+Es7Mss9vvYTtGXrP78X6TR6/oLlmWtzm6RU6jmg5dTskROXjP3MrZsv2iKSauh1yswr4XDK6FPFNKBEPZdnHry93a+i9sd5ta7Zy6Q+H9vs6x+cZ6zWO3Qr4LlXUHVP3ttJb8fi9qMVu2SqatPD2e01GV3508RJxVY59/xXab7G7TWzmLuUzr7+U4/hrvb+VbdnBi7z9Dijg+7T3jp2qFFc8g72cf+IeWeSz/ds7NlsB16VF3iXI6FKC31t6co59T/P23Zdg+Eb4td/mON7vvR2YZb9jvP3OLuD77OQd+zeluOLxf0B3L+DYdtQtt57tjuYj6k4rq5HRlReHkH+tuF7e7et491wj37LrfrmmEVn228rb7+kCvs+5ZJ+dISqPaoIe02wdZfkwgformjzotasd89TeXUaXDvz5pPVV/53uPdMI90bVV4nY7xk7PUfj/Zi607/65vFdNgA+oO7sjE2V4opmD69NXVOEhl90dlTEPn5n3I15at8no0sHN1PYeg5RE+3znRLjr0sxNse+/li6yXncLlzhHfOI0lvx3FLklVaYGupWNHk+Yp+NqF0z2AjmYdc3jfHnrL9AlIyuRDwVSsJ/8ti/Tw6jy+fqKXwF+EQ9pvi+p/8U0T26rd0veXjf5SSzNoVIL37JpVzTEwsxzGwVTfzZEfPdFWXUncXpRK8DIaMrEbMpfBGcGREJzHdg7quhY96pZ9/B1O3tyvySTnaN7irgAXcL7S/ReJxSW/H480+viKGVT0WT1tStq5jZXnW3stcQDL7/j9deZXQlpoq6g2vvzfO4MRHJzrfUTXjl9GV5/AIPou7D5vq25cARSm2TwK9wMyDmuZBPRZMu5F7hLrz9F/iZjK70dPeScFmex20WkdS+eR57pXfcxnkc0wY4h7pd/P62mGBGRU+ltUmwIXWLxb5P/EKr+VY0aUGwqth7WdriSuBugjnivWR0paeG4JlbZutQwLG9Q8f1KuC4Dt7frCnwM48geCg8n6BCykEE4/FUd65pt90uCWi29jTzWWi9L0Gv7ShgJPAjgkHrGWR0oiiaA2+xfoFQIdLIpp7R/VUhaRyqK+D2LlOvbkmet75ClIr+xF/qUxTIIIK5qHPIv2JvWsmUlrpVaRUp5ufkP0VSxKQHwYK6mcGLnxBUWC1n+hI8q1tL9jmzQpSaOzyjG6yQJE9LghkGmYKXywh6ltpWyPfLFOicipY2FA3PJgTPhfNdM3hH6o6j+wgtrp44+1F3XNCjBD2llURbgkncBhyslIsG5k/UzvG+jaDyddRIhc4ElXq+pv45tKJItqfuotMzCEZ9p5GO7gqzQwyNUdRO/2ml9IsGbKtLiB43N49gxsRM1w7XRexzj+46kqEzQV2uNdQuETiadI8v+zvxe6KqgVeczu/VDEQD0Ypg3Ga2QcLZtjXAJbpljU8LZ2iZUeKrnOG1L4PPvp1rCKsIVu8qliHuV3QZuevhCRGXKmAH4GLgWeoWqQjPb51GsKB7L4UsPkOpu7DNJMqvNzVTNeLxmDr3oorCojS0IxjZ0Af4tq7ekmNz6i5ROJugkkM58m2Cyc9GMH2mWHoQVDpZB+yiJiJE+ZJ5eL+S2uoIZ1D4fNG0cSq1ZZtaxNC5gNqyOdVqLkKUEQbNDI7vEzwTyDzgvJHsq2iVGy2oXY3plBg6LaktwX60Wo4Q5WNyexi8YWBvwYdVQZXdbSrwq2aKKH5FvEoUh1Jb/bW9WpAQ6Ta4HgbjDcxtc63yC0o+4UzqphgaVcALFFZfTwjRyAbX2uA8g+XO4Ja6/2/YBL7+dwm65tcSr1psf6exEuinViVEegyuymCEwcfO4NYZTLCmVzH3anc19iLxRpKPI/eCxEKIRja5gQZTQ7epr1iw4nxTpAO1i4scGEOnC7WL5uytViZE6Qyum8EtBmudwc0zGGUaGnGcM6iPiTd/NbMG7SziDVsRQhRhcDUGow2WOINbaXCtVU75pLg0A15zJjUmhk4N8K7T+bXCKkTjmdx+Bu+HblMftWDqiKjLD5xBLSXec8oDqF0l7FsKqxANa3BbGDwZMri3Tc+O6iOzBmzclZOedDrXK6SiqRlPK4O93DOxMQZXuGEcvzY4yJJZPg2DFgY3G6xxBrfA4FjT8nz50JtgQep1wM4xdLYEVhPMKNlaYRVN5dZxUmicWrZtncFMg7MtmGMa528+brDKdTzo9qkwLnZXY9OJ10lzg9OZrJCKSja4LQ2m1GNu2baFBj+L8bf7WDAYVhROG4IKrka8mSEdCYqRGsGCw0JUnMntYrA4i4m9656dTTB4zOBVg9VZrvDOUjRLwhHUzl9tF0PnJMAOC/K8gcIqKsnkBkTcpi41uMCyVP806Ggw0uDTCMM7Q1FtdKqAKc7sLo6h0/w1eMDl8XSFVVSKybUy+LdnVO9YnuW23bzTv3vHr7Is8zANfuLGxtW3/VzZKZgBBPNXVxCs6Vpsm9jD5XGJQVeFVVSC0V3qmdSHBhsVqNHC4AlP5zWLmIdpMDzPZ35HKjtFMd5d1d0fs1087PLwF4VUVMLV3CLPYPYuUqtrxDO+PSP2a+s6PerbVCetODamdv7qXjHaxqYGK9zUux0UVlHORvcrz5heiKl3vqenqhilYYwzureIsQiJweUujy+Z1tsUZWx0D3jGNDKmXu/Q5Hsz+Nq02k8p2IDatTWPi5HPtgafuVzqmakoW6Ob5xndJglovu1pbqdIl4SDnNEtIli4u9h8/tLl8ROD1gqrKDeT28QzpAUJ6d7p6Y5StEvGczvBO6/DH2Lks9pgmsvleQqpKDejG+gZ0ksJ6Z7r6f5e0S4NN8FWbqjPKoMtYuR0RzcYfJlpVXVRZka3l2dIExPSPdnTvVrRLmmeb3J5mBRT5y6nc4+iKsrpBDjIM6QJCeke6emOU7RLmudOoSFE+8Z81PGN09lVkRXlcgLs7xnSgwnp+kNWblG0S57rU1wu3oszf9WV6DKDGSqhJcql8e/mGdKkhHRP9XS1bmjpc93c4C2Xj1Nj6LQ0+Mjp/EqRFeXQ+Lf1DOnVhHQv9nTPVLRTke+hofmrG8fQOcTpfKHZK6IcGn5H15MWrlbSLAHdhz2jO1jRTk3OH3M5uTWmzvNO50pFVZRDw3/HM6UtE9Cc62n2VKRTk+++ofmrA2PobO80VhpspsiKtDf8cUneZrq6dmG9eYpy6nL+J5ebKXHmrxr82ek8oqiKtDf6/TxjmhWz8V/v6V2nKKcu5+0MPo/7WMFgI4Mvnc4+iqxIc6OvNvjAM6eji9TazKtSvM5gc0U5lXkf5XI016BVDJ3TQstStlBkRZobvT+TYVGhz11cleGXPJ2/K7qp/oF7Je4UPYMag9lO52RFVqS50TczeNEzqc+zlUKPOP7boV64sFl2U3RTnfchofmrPWPoDHM5X6xlKkXaG31vt2h02KzWuDVWB2Ypid7T3bosjjjuQEW1LPI+weXszpg6E53OWEVVpL3Rb+7Wi4hav2GBwctuXYgXDeZk2W+5wU8VzbLJeQ83fnKdwS4xdLZwFVLWGGyjyIq0N/xuBvd6A4nz3aYbDFYUyy7nF2RmxhhUx9C5zulMVlRFuTT+Qa6A5n/qMbflbmHrQ7SmQNnmuqXBx3F63J1Ox9Djj+GKrCink6DaoL/BCIMTDc4x+I3BoQa7G7RUlCoiz4c6g5pv0C6GzolO532DDRVZIUSajK4q1PN+aQyd5gZvuqlhP1BkhRBpM7v+ofmr/WLq9FVEhRBpNbtxWo9XCFHpRtfF4CtndnsrIkKISjW7M0MFHrT4uBCiIo2uxuBdZ3YnKiJCiEo1u+Gh+audFREhRKWa3VOqKSiEqHSj29rNX72tkFkvbizdzm6JxYvd8be7ysZnumon7RRhIURazK5HAfv2M7gjVHU417ba4Fn17AohysUMWxrc4K7+rIjtWYM+iqQQIq0m18FgWhYDm2vwoMFNrrLJ3QavZ9l3kcEgRVQIkTaTqzZ4JsK0HjHon+t22OCaiCvAhQbdFVkhRJqM7ncRlaWPLOD4HdyVXFhjksp9CSHSYnLd3ULYYZMaWYTO9hE6hyrCQog0GN2Fnjk9EUPrHE9rmiIshCi1yTV3BTrD5rRTDL2WEUNS1DEhhCip0Q3wTGl2Apo3eZpjFGkhRCmN7iTPlG5KQPMgT/MxRVoIUUqju90zpWMT0Ozjac5XpIUQpTS6JzxTGpqAZpWbFpbRXBtn6UUhhIhrSv9siI4DVxIqrNtB0RZClMroZnmGtEVCuh96ur0UbSFEqYxuhmdI2ySk+5mn20XRFkKUyuie9Qxp54R0v/F0axRtIUSpjO5Bz5AOSECzlcG6kOZSRVoIUUqju8IzunMT0Bzsac5UpIUQpTS6Az1TeiABzeM9zZsVaSFEKY2uu2dKXxu0jqk5ydM8SpEWQpTa7KZ4xnRkDK1eboDw/57PGXRSlIUQpTa6X0SUTW9bpNZDntYtirAQIg1GV2MwxzOoOwqdtmVwjKexIqkByEIIkYTZDXHl08NGdbdB+zyOrTY41btlNYPTFVkhRNrMbkzE4jjz3XoSm0bs38ngUINXI46bqIn8Qoi0mt0p3mDf8LbA4C2DmQbzvAol4e0ezYQQQqTd7H7iOiQKXbx6ocFoXckJIcrF7DYwGGnwaMS8VX9ZxJcMzsrneZ4QQqTZ9AYY/NjgSGeA+xvspDFyojH5f+F4R7uP/5+yAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE3OjUyOjMxKzAwOjAwmRy9QwAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxNzo1MjozMSswMDowMOhBBf8AAADrelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAACiRjZJNDsIgEIX3nOJdgAbonyy6oD+pRksTrb2CceXG+0ewAdpIGgcWM+R7DPMCgY1re36+4UO0hABsZ0spMaeMMTLAJqi7/qTRTKp2J81419MNJTKjMGtLqmkc3AmHekAkQkqWHsAS9o1VgubYVxyzulSUO5WwKs9E5FFVihGUO5iypMxjzeii87IMwyswNPZGyxeOz00bHp70X5PCiDxL+e9EDiztEJ7cATvdbpxevK9H3QbvufEkC6ZyM2se3BKmLIILtizXt6/vsrX7ASYnH3+UdUbGoB//AAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAACSdEVYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMATz1bTW9dKD1PKShbTy1dKVtPLV0uW0FnK10uW0FnK10gfCgwLjc1LC0xLjI5OTA0LDswLDAsOy0wLjc1LDEuMjk5MDQsOy0xLjI5OTA0LC0wLjc1LDsxLjI5OTA0LDAuNzUsOzIuMjk5MDQsMCw7MCwyLjI5OTA0LCl8KUtivQAAAABJRU5ErkJggg==) |
모습 |
---|
실버 몰리브데이트는 노란색의 입방정 결정 물질입니다. |
힐 시스템의 공식은 Ag2MoO4
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |