몰 질량 of Fluorescein (C20H12O5) is 332.3063 g/mol
C20H12O5 중량과 몰 사이의 변환
다음 물질의 원소 조성 C20H12O5
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 20 | 72.2869 | 수소 | H | 1.00794 | 12 | 3.6398 | 산소 | O | 15.9994 | 5 | 24.0733 |
몰질량을 단계별로 계산하기 |
---|
먼저 C20H12O5에 있는 각 원자의 수를 계산합니다.
C: 20, H: 12, O: 5
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C20H12O5) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(O) * Weight(O) =
20 * 12.0107 + 12 * 1.00794 + 5 * 15.9994 =
332.3063 g/mol
|
화학 구조 |
---|
![C20H12O5 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAD2CAYAAABLATtgAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYES0yYtHRwwAAAAZiS0dEAP8A/wD/oL2nkwAAJMlJREFUGBntwQeAHwR9L/DP5bITAoQRNiFsooBGoGAQR8CnbVptDdai5yikWkdUtHFVr2rbOFAjVRu1omdtbVxP4wDzohajgkYBIYAiMgJhh5Gd3N33SUvfy5+7iwFCcv///T4fYXzYN7TrR5gY9jaAMClMC8eG8UopZbAKnSFhsn6EJWGFhwnPCj8PCQkJm8KXw0FKKWWwCZ0hYbJ+hCVhhS2EPw6bw1XhheHIcGyYGx4It4T9lFLKYBI6Q8Jk/QhLwgoPCWPCneG6sKuHCaeFnvBvSillMAmdIWGyfoQlYYWHhDNDwmwDCN8Mm8IEpZQyWITOkDBZP8KSsMJDwgdCwlMMIHSGhNOUUspgETpDQkJCQkJCQsIKDwmfDQl7G0B4eUiYpZRSBovQGRLmhLPCWeGscFY4K1wVVnhI+HRIONAAwqtCwvOUUspgETpDwmT9CEvCCg8JfxcSnmoA4R9DwlOUUspgETpDwmT9CEvCCg8JM0LC2wwgXBruDSOVUspgETpDwmT9CEvCCg8Jw8LycE841MOEl4WEf1RKKYNJ6AwJk/UjLAkrbCE8KawK94TOMDOcGT4busOPwxillDKYhHPDynCAfoT/CD/zMGFK6Ar3hoSE34R3hjFKKaUVhV3CaP0I7eG5Siml1YUvhoS/VkoprSy8NPSG3vAKpZTSysLrQkJ3eIFSSmll4T0hYWN4tlJKaWXhvJCwNjxVKaW0qtAWPh0S7g3HK6WUVhXaw8KQcEc4UimltKowMnwnJNwcDlJKKa0qjA0/DAm/CpOUUkqrCruGX4SEy8NuSimlVYW9w7Uh4UdhnFJKaVXhwHBjSPhuGKWUUlpVODzcHhK+EtqVUkqrCseFVSHhgtCmlFJaVTg5rAkJH1FKKa0snB42hIS3KaWUVhaeHzaHhDcopZRWFl4aekNveIVSSmll4U0hvdx7Es9VSimtbDXveiZXYT2eqZRSWtx5CNbiqUoppYW14dMI7sXxSimlhbVjIYI7cKRSSmlhI/EdBDfjIKWU0sLG4ocIfoVJSimlhe2KXyC4HLsppZQWtjeuRfAjjFNKKS3sQNyI4LsYpZRSWtjhuB3BV9CulFJa2HFYheACtCmDStg//E34Qvha+OcwK7QrpTxiJ2MNgo8og0Z4cVgX1oaLwsJwZUi4LOyvlPKInY4NCN6m7HTh5LA5LA2TbCE8P6wPl4RhSimP2POxGcEbPD4OwJ/jfKzGWtyA2Rip/D/hO2F92Fc/wrtCwkyllEflpehFL17hsZuCDizAcgRBEARBsAqfxrPQbggLo8PGcKEBhENDwj8rpTxqr0PQjRfYdiMwDXOwEHcjCILgASxGJ16I0/EFLEUQBHejCzPQZogJR4eEjxtAGB42h+8ppTwm70GwEc/WvwmYgU4sxnoEQRCsxELMwTQMM7Cj0YlrEQTBzZiP6YaI8OSQ8B5bEe4KlyqlPGbnIViLp2I/zMJ8LEMPgiDoxnIsQAcO8ehNRSd+gyAIbsA8HK1FhP3CrDA/LAtnhkNDwqcNIIwKveEipZTHbBi6EKxGEATBGnwP78azMcHjYxrm4zYEQbAcnThMkwjDw4nhDeEr4faQkJCQ8JHQHlaHiw0gPDEkfFApZbsYjjtwN+7GIszFdIzy6OyDP8NbPDLDMB3zcSeCIFiOudjXIBLGh+lhblgU7gsJCQkJt4dFYW6YHkb6nfCF0B2O1o/w0ZBwslLKdrEferEaoz06U9CBBViOXgS9mOjRaccMdOEBBEEPlmIO9raDhX3DzDAvLA2bQkJCQsL1oSvMDlNDm36EI8KacE2Y6iGhPcwJ3eGrSinbzasQfMW2GYmT8SZ8HXchCILgAVyId2Kix240ZqILaxEE3ViMDkzw+JiCDizA8mu4KSQkJGwOy8L8MCvs5REITw+3hd5wdVga7gwJXw3jlVK2m28jeJn+7YIZ6MRirEMQBMFKLMJcTMcIj59d0YFF2IQgWI9F6MA4j85oTMdb8E2sQhAE6eS74VvhbeHUMMZjFMaFF4UPhI+Hvw0nKKVsV+OwHj2YpFE7fo4eBEHQgyvxCbwYk+08E9GBRehGEKzFQszESAObgBnoxGKsRxAEwUosxBxMwzA7QRgZvhj+UinlUXk+gqX691NsxjLMxyzsYXDaH3OwFL0IglXowkwchFmYj2XoQRAE3ViOBejAIQaJ8KchYXN4vlLKI/YZBHP172CM0nwOwztwFYIg6EEQBGuxFPMwExMNYqEzJGwMz1FK2WbDcDuCY7SuJ+ITCB7AV/FGnIQRmkz4YEhYG05VStkmpyC4Xut7M4LPaXKhLXwqJNwXnqyU8nv9I4IPaX0XI3iBFhDaw3+EhDvDUUopW3UVgmdoDU/GMfqaiM3YiAlaRBgZvh0SVoSDlVL6NQXBfRihNVyEYJZGL0FwkRYTxoaLQ8KvwySllD5ej+DftIbx2IBu7KHRQgSv0YLCruHnIeGKsLtSSoMlCF6kNcxC8AONRuA+BJO1qLBXuCYk/DiMU0r5L7tiEzZjd62hC8G5Gp2B4HItLhwQbggJi8MopRQvQrBEa2jHXQiO0Oh8BO8xBIQjwx0hG/lXtCtliPs3BK/XGp6G4Fp9/RbBiYaIcGwPN/4vfonPok0pQ9RwrEJwuNbwAQTv1+hYBLdjmCFkb07BWgTnaW7D8Cd4EUYr5RF4BoLlWse1CE7V6B0IPmlomoENCP5W8xiOaZiDhdiAILgHuyllG30IwT/qqx2naS6HIbgHwzW6FMFMQ9fzsBnBGw1OEzET87AUGxAEQdCNXgTLMUIp2+BOBKdoNAxfQjdmaR5vQtCl0ST0YB3GGto60INe/KWdbz/MwnwsQw+CIOjBcixABw73356LtQi+gGFK2YpDEATH6OsdCDbhuZrDfyKYpdHZCL6hPOg1CLoxy47TjqmYjS7cgCAIgk1YhnmYiYkGdjzuRfBxpWxFG+5DsAwT9PU+BOvwNIPbRGzGJuyq0dcRnKP8j04EG/G/PD7GYTrmYhFWIQiC4H4sRidmYJRH5hSsQfBhpWzFEbgWwY8wTqM2LEBwP6YZvF6M4CKNxmAterG/sqUPIliL6R67SZiJeViKjQiCIFiJhZiDaWjz2J2BDQjeopStOBA3IrgIozQahn9HcBeONjj9B4LXaDQTwaXKw7XhUwjuw5M9MlPQgQVYjl4EQdCN5ViADhzk0RmOE/EGPFn//hTdCF6vlK04HLcj+AraNRqBbyK4BZMNLiNwL4JDNPokgnco/WnHfyC4E0fp33BMwxwsxJ0IgiBYjaWYh5nY1aMzHtMxF4twH4LgPQb2MvSiFy9XylYch1UILkCbRmPwAwTXYV+Dx+kIrtCoDbcgOE4ZyEh8G8EKHIxdMAOdWIx1CIIgWIlFmIvpGOHR2R9/jo/iMnQjCIJeXI1P4QxbNwdBN/5MKVtxMtYg+Ii+JuBnCH6JiQaHjyJ4j0YnILgJbcrWjMOPEKxCD4Ig6MGV+ARejMkevSnowAIsRxAEwWYsw3zMwl4emX9AsBFnKGUrTscGBG/V155YjuASjLfz/RbBiRq9G8H5yrbYDffiNmzGMszHLOzh0RmOaZiDhbgbQRAED2AxOjEDYzx2H0awBqcoZSv+FN0IXq+v/fFbBEsw2s5zLILbMUyjyxGcoWyLIxGswjiPzgTMQCcWYz2CIAhWYiHmYBqG2f7a8BkE9+J4pWzFS9GLXrxcX4diJYL/jeF2jrcj+JRGB6EXqzFK2RZvRvA5224/zMJ8LEMPgiDoxnIsQAcOseO048sI7sARStmK1yHoxp/p6wm4B8HnMcyOdwmCP9bo1Qi+pGyrixG8QP/aMRWz0YUbEQRBsBZLMQ8zMdHONRIXIrgJByllK96LYCOera+TsBoXY5wda2/0YB3GanQhgg5lW0zEZmzELhrtgsVYjSAIgjvwVbwRJ2GEwWcsliL4FfZWylZ8CMFaPFVfT8FYO97ZCL6h0XhsQDf2VLZFB4IL9W8FguvRhdmYijbNYTdchuAy7KbFhInh6HBwaNePMC6M0Y/QFnYJIw1xbfgXBPfieIPD1xGco9ELEFysbKsvIXi1/p2AvTW3vXEtgh9hnBYQnhN+FnpDQsKq8JEwwRbCirBEP8LkkNCpaMeXENyBI+1cY7AGvdhfo88heLOyLUbifgSTtbYDcROCizBSEwsdoSdcFs4K08Jp4aOhOywLYzwkrAhL9CNMDgmdyn8ZiQsR3Iwn2Hn+CMFPNWrHXQiOUrbFGQguNzQcgdsRfBntmlDYK6wJPw9jPUw4OyS820PCirBEP8LkkNCp/D/j8RMEG/ENPB3D7FgLEPytRtMR/EbZVucjeLeh4zjci+AzaNNkwpyQMNMAwtXhttDmd8KKsEQ/wuSQ0Kk0OBj3IwiCu7AIczHN46sNtyA4TqP3Ifigsq1uQHCCoeUUrEHwYU0m/HtI2McAwgUhYbLfCSvCEv0Ik0NCp9LHOHwMl+NGBEEQ3IwL8GLsZ/t6IoKb0KbRNQhOU7bFcQhWos3Qczo2IHiLJhKWhA2hzQBCZ0g4ye+EFaE7rA6rw+qwOqwOa0JCp/J7TUEHFuAWBEEQXI8FmIWJHruDcZpGhyK4B8OVbfEOBJ80dP0puhG83iAVRoSTw0y/ExaHzaHdAMLfh4Sn+J2wIlwbXhleGV4ZXhleGd4eEjqVR2wKZmMh7kUQBD1YhvmYhQm2jzci+FdlW12KYKah7WXoRS9ebhAI48OM0BkWh3Uh4Va/Ez4XEg4wgPD5kLCf3wkrwhL9CJNDQqfymLRjGuZiMdYjCILNWIZ5mIGRHp3vI3ihsi0moQfrMFaZg6Abf2YHCweGvwj/FK4IPSEhIaE3XBX+OYwO54SEP9ePMCzcEH7jIWFFWKIfYXJI6FS2qzGYgXlYik0IgmANFmMupmGY3283bMIm7KZsi3MQfF35H3+PYCPO8DgKU0JHWBCuDwkJCQmbw7IwP8wKe9pCmBDuCdeG3TxMODckvMFDwoqwRD/C5JDQqTyuxmMG5mEZehEEwZ1YiNmYqn9nIVisbKtvIDhb2dKHEKzBKbaPMXjav/Da8O1wX0hISEi4JywKc8P0MMrvEf44bAzXhb8OTw9/HD4XesNFYbiHhBVhiX6EySGhU9mhJmEWFuBGBEEQrMRCzMaB/tsXEbxO2RZjsBY92FfZUhv+BcG9ON4jNwEz0InF2ICcwyUhIWFlWBjmhGlhmEchnBS+GzaFhIQbw9vCSFsIV4dv6Ec4KDwQ3qrsVEfiVfgy7kYQBMFybEBwiLItZiK4ROlPO76E4A4cYesOx8vwaVyDIAiCbvz8IN4Xzgz72c7C6HBA2F1pKVMwGwtxH4LbsQZPUrbFJxG8XRnISFyI4CYc5L+1Yypmows3IQiCYA2WYh5mYnelbAcjcSqWILgNhylb04ZbEByrbM0uuBTBLfhPrEEQBMFt+DJejxMwXCmPo5H4DoKbcbAykBMR3KRsi92wAjchCK5HF2ZjKtqUsoONxQ8R/BqTlP68B8FHlS2NxTD9uw7BW7CnUgaJXfELBJdjd+XhLkdwurKl9+IO/IVGRyG4G8OVMsjshWsQ/BjjlP9xEHqxGqOULV2J4FkavRnB55QySB2IGxF8F6OUB70GwUJlSwcjuA8jNboYwQuUMogdjtsRfAXtykUIXqJs6XUIvqjRRGzGRuyilEHuWKxC8Fm0GbrGYwO6saeypcUIztKoA8GFSmkSJ2MNgvmGrlkI/lPZ0gRsRDf20OhLCF6tlCYyAxsQvN3Q1IXgTcqWXojg+xqNxP0IJiulyTwfmxG8wdDSjrsQHKls6V8RvFGjMxBcppQm9VL0ohevMHSciuA6ZUvtuBvBERqdj+DdSmlir0XQjRcYGt6P4APKlk5DcI2+bkBwglKa3LsRbMSztb5rETxN2dIHEbxPo+MQrESbUlrAeQjWYrrWdRiCezBc2dKvEEzX6B0IFiilRbTh0wjuw5O0pnMRfF7Z0lEI7sZwjS5F8EdKaSHtWIjgDhyp9fwAwZnKlt6M4HMaTUIP1mGsUlrMSHwHwc04WOuYiM3YhN2ULV2M4AUanYPg60ppUWPxQwS/xiSt4cUIvqt/0w1NE7EZG7GLRt9AcLZSWtiu+AWCy7G75vc1BK/V11wE7zL0dCC4UKMxWIse7KOUFrcXrkHwY4zTXKagAwuwHOuxAafr60+wGcG5hpYvIXi1Rn+M4BKlDBEH4kYE38Uog9NonIq34ptYhSAIgnUIbsFkfb0EPejF2YaGkbgfwWSNPoXg7UoZQg7H7Qi+iuF2vgmYgU4sxnoEQRCsxELMwTSMw/cR/Ab76uvVCLpxptZ3BoLLNGrDLQiOVVrSIbgSG3AfzlH+x7FYheCzaLNj7YdZmI9l6EEQBN1YjgXowCH6NwE/Q3AlJurrXQg24jla2/kI3q3RiQhuUlpOG16G1QiCIPh3HKI86GSsQTDf46cdUzEbXbgRQRAEa7EU8zATE227PbEcwaXYRV8fQLAWp2pdNyA4QaP3IPio0lKOxVIEwe14BX6IDQg2YQH2UmZgA4J32D7GYTrmYhHuRRAEwR1YhLmYjlEem/3wWwRLMFqjNnwSwX14stZzHIKVaNPoCgSnKy1hHDqxEcFt6ECb/29/LEA3glWYi9GGtudjM4I3euT2wUzMw1JsRBAEwfXowmxMRZvt71DciuDrGK5RO76I4E4cpbW8A8ECjQ5CL1ZjlNL0ZuJmBJsxH7sa2DFYhCC4GbMxzND1UvSiF39p66agAwuwHL0IgmAzlmMBZmFvO84TcDeCz2OYRiPwLQQrMFnruBTBH2n0GgQLlaZ2BC5CEPwMJ9h2M3AZgmAZnmHoei2Cbszy34ZjGuZgIe5CEATBaizFPMzErnauE/EAgo/pawz+E8F12Efzm4QerMNYjS5C8BKlKY1FJzYguAdzMMwjNwyzcAOCYDGONTT9HYLNuBzrEQRBsAL/htfgOLQbfJ6B9Qjeq68JWIbgCuyuuZ2D4OsajccGdGNPpenMxI0IetCFPW3dbvgunmFgYzEX9yHoQRf2NTQcjDn4BYJ1CILr0YXZmKp5zMQmBH+jr71wNYKfYLzm9Q0EZ2s0C8F/Kk3lMHwbQfBznGTbdCIIvoljDGwPzMNGBGswDxO0ngPwRvwMQRDciRsR/AwjNa+z0INe/JW+DsANCBZjlOYzBmvRg3006kLwJqUpjEEn1iNYhTlot+3GYC7uQ9CDLuxrYEdgIXoR3IU5GK657Y4OLEI3gmAtFmImRmB3/BbBhzS3VyHowZ/r6zDchuBrGK65zERwiUbtuAvBEcqgNxO/RdCLLuzl0dsD87ABwVrMwwQD+wP8EEFwDWZpLmMwC4uwEUGwHovQgXH6OhEb0Ys/09zehmAT/lBfT8Q9CD6HYZrHJxG8XaNTEVynDGpTsAhBcBlOsf0cgYXoRXAX5mC4gc3EdQiCJXiywWsUZqILaxAE3ViK2Zjg93s9ggdwpOY2D8E6nKavk7AawfmaQxtuQXCsRu9H8AFlUBqBOViD4F7MQbvHx0m4GEFwDWYZ2AjMxh0IerEQUwwO7ZiOBbgfQdCDpZiDSR65LyO4AmM0rzb8M4L78RR9PQvrEbzL4Hcigpv0dS2CpymDzjNxDYJgISbZMWbiOgTBj3GKgY1HJ9Yj2Ij52M3OMQ3zcTuCIFiOTkzx2OyCaxF8XHMbhn9DcBeO0defYDOCcw1uL8R9OF+jwxDcg+HKoLE/uhAE12KGHW8EZuMOBL1YiCkGdiAWoAfBPZiLUR5/U9GJ6xEEwdXoxJG2r2OxDsFLNLcRWITgFhyir5egB7042+A2ArtrdC6CLmVQGIE5eADBGnRipJ1rPDqxDsFGLMBeBjYN30MQ3IQOtNm+JmMurkEQBDdjPqZ7fL0SwWocrbmNwfcR/Ab76uvVCLpxpubyAwSzlJ3u6bgKQbAIBxpcDsACdCO4B3Mx2sBm4AoEwU9xmsfmAMzBUgRBcDe6MANtdpwuBFdirOY2AT9FcCX20Ne7EGzEczSH/bEZm7CbstPsiy70Ivg1nm1wm4pvIQhuQgfa9G8YOrASQbAYT7DtJqIDi9GLILgXXZiJEXaOcViO4Aua3x64CsGl2EVfH0CwFqca/D6O4EZlpxiOObgfwVp0YpTmMQOXIwh+itMMbCzm4n4Em7EA++jfrujAImxCEKzHInRgrMFhKtYieLnmtx+uR/A9jNaoDZ9EcB+ebPDZB2fiF+hG8BVlhzsVv0QQLMLBmtMwdOBWBMFiPMHA9sR8bEawBvMwHqMxE11YgyDoxmJ0YBeD018gWI/jNb8puBXB1zFco3Z8EcGdOMrONQUdWIDl6EUQBHfjaGWH2QcL0IvgN3iu1jAWc3E/gs1YgH0M7BgsQhDcjdUIgh58D+dgoubwL7uwfDk/DBM0v6m4G8G/YphGI/AtBCsw2Y4xEqfgzfg67kIQBMH9uBBfwBuwp7JDjMSX0INgHf4Wo7SePTEfmxGswTzsYmAn4zLchmA55mI/TeYAxmzk5yHh37WGE/AAgo/payyWInitx8cumIFOLMY6BEEQrMQizMV0jFB2ik4EwdU4ROs7EgsRBLdiNtr17+kILtHkwuHh/pDwKq3hGViP4L362g0dtp/9MAvzsQw9CIIguB5dmI2pyqDxKwSXGnpOxlIEwdWYpa9TEPxICwhnhoQNYZrWMBObEPyN7acdUzEbXfgtgiAINmMZ5mMW9lAGrSsQfM7Q1IYX4QYEd2K8Ricg+KkWET4WEm4ME7WGv0APevFXHp2xmI65WIR7EARBcD8WoxMzMFppGh9F8FpD2yici5fr63gEl2kRYVRYFhK+Edq0hlch6MGf+/32xkzMw1JsQBAEwUosxBxMwzClaZ2H4I0avQTLMEeZimC5FhIODveEhDdoHW9FsAlv1mg/zMICLEcvgiDoxnIsQAcOVlrKPARzNXoDgg8rhyP4tRYT/ij0hk3hqVrHeQiCn+K3uANBEASrsRidmIHxSkt7D4J3aPRqBP+kTEZwgxYUzgsJN4c9tYZhWI4gCILbsAhzMR0jlSHlnQj+TqPZCBYo+yO4RQsKw8PSkPDtMExrGI5/wC+wAMcqQ95bEfyjRi9H8BllbwR3aFHhgHBXSHirUlrUuQg+qNGLEXxe2R3BKi0sPCf0hO7wLKW0oNchmK/RCxF8URmPYLUWF/4+JNwe9lVKi3kVgo9r9KcIvqqMQrBRiwvDww/CzeE4pbSYsxF8SqM/QrBIaUPQawgI+4Q9lNKCXorgsxo9G8GFyoO6EbQbYsJJ4VNhWbg2XBw6w15KaTJ/geALGj0TwRLlQesRjDaEhLeE3nBTOD/8ffj3sCHcFZ6ilCYyC8GXNDoVwcXKgx5AsIshIpwResPXwmhbCFPDneGmME4pTeJPEPxvjf4AwU+UB92DYA9DRFgS1oTd9SP8ZUg4WylN4rkIvqXRNAQ/Vx50O4J9DAFhdNgYLjKAsGdI+KJSmsTpCL6r0bEIfqk86GYEBxoCwqEhYYGtCA+ES5TSJJ6O4PsaHYXgGuVB1yOYYggIR4eE82xFuDVcrpQm8VQESzU6FMFvlAddi+BIQ0CYFBL+wwDCiNAT/o9SmsSJCC7V6CAENykPuhLBEwwR4dZwlQGE40PCB5TSJJ6E4DKN9kWwUnnQLxA8yRARPhgSTteP8LmQ8CSlNImpCK7SaE8EdykPuhTBSYaIsEdYEVaFM8NIvxP2CvNDwieV0kSOQPArjXZFcL/yoKUIphtCwpTw45CwIawKvWFT+GAYrpQmcgiC32o0BsE65UHfQ/AMQ0xoC8eHl4fXhTPDJKU0oQMQrNBoOILNyoMuQnCGFhf2CPPCWKW0mEkIbtdXL4I25ZsI/lCLCwtDwmeV0mImIlilr00IRihfQ/A8LSx0hITV4TCltJhdEKzW11oEY5WFCGZpUeGAsCokvFQpLWgUgg36ug/BbsoXEJylBYVh4Xsh4WtKaVHDEPTo604EeykXIHiZFhTeFBLuCHsrpYX1IBim0a0I9lM+ieAcLSYcE9aH3vCHSmlxGxCM0uhGBAcrH0Pw11pIGBUuDwkfV8oQsBrBLhpdh+Aw5SMI5mgh4f0h4TdhvFKGgHsQTNToagRHKx9A8CYtIkwP3WFz+AOlDBG3I5ik0RUIjlP+AcFbtYAwIdwQEjqVMoSsQHCARj9D8BRDx0yM19ffIXiXFhA+GxKWhRFKGUJ+i+AQjX6M4GStbwq+ieD9+noHgvdqcuF5IWFtOFIpQ8yvEByh0V9hHg7RukbjXViPYBVm6+tvELxPE7uAfcJdIeGvlTIEXYVgqqHlWbgGQS+6MEn/zkXwCc2rDd96FT9Zy5dCm1KGoNUIXmRo2B9dCIIrMN3ApuHXWIFeLEMnpmkuf41gFQ5QyhC1GsG/am0jMAerEaxBJ0bq3574NHoR3I71CILgN/gwnokRBq9DsRrBmUoZwr6IIPgljtd6no7lCIJFOFD/2tCBOxFswnyMxxjMxALciiAI1mAROrC7wWM4LkHwWaUMcbvhW+hG0IPP4ADNb190IQh+hTMM7En4MYLgezha/4ZhGjqxDEEQdGMp5uJoO1cnghXYXSnlv+yBediAYC3mYVfNZzjm4H4Ea9GJUfq3G+ajG8Gt6PDITMZsLMJGBEFwPeZjBobbcaZhE3rwDKWUPg5CF3oR3I25GKk5PA2/RBAswsH614YO3IFgE+ZjF4/NOMzEAtyBIAjuxkJ0YILHz1hci+B9SilbdQJ+gCD4FWahzeC0D7rQi+A6PMfAjsNSBMEPMNX2147pmIerEQTBZizFHBxo+/oEgqswWillm8zAlQiCSzDd4DEMHbgbwTp0YrT+jcM8bEawEh1os2NMwRwsxiYEQbAc8zAdbR69M9CLDThWKeURGY7ZuA1BsAiH2bmegp8iCBbhEAObiRUINmM+Jth59sAsdOF+BEFwJ7owC+Ntuz2xEsG5SimP2jjMxQMINmEB9rZjTcR89CBYgRcY2BH4LoLghzjW4DIc0zEfNyEIgnVYjDnYz9YtRPBTtCulPGb7YwG6EaxGJ0Z7fLWhA3ch2IT5GK9/Y9GJjQjuwRwMM/hNxVwsRS+CoAfL0IlpaPP/vQxB8CmllO3qaCxEEKzAbLTb/p6EnyAIluBoA5uJmxD0oAt7aE57oQMLsRpBEKzE9/Fh3I8guBXtSinb3Qz8AkGwDM+0feyG+ehGcCs6DOwwfAdBsAwnaR1jMANfQRAEQfAtXIfgNKWUx8UwzMINCILFONaj04YO3IFgE+ZjF/0bg05sQLAKc9CuNY3CvQh+jjX4EQ7HPyD4hFLK42oM5uI+BD3owr623b74EYJgCY4ysJm4AUEvurCX1ncBgndq9EQE92CkUsrjbg/MwwYEazEPE/x+w/FLrEQH2vRvCr6JILgMJxs6no3gGn1dieA5Sik7zOFYiF4Ed2EOhtu6o7CL/o3EXKxHcC/moN3QMhy3Izheo7cj6FJK2eFOwsUIgmsxyyP3LFyDoBddmGTo+hiCeRpNQS8ewBillJ1iJq5DEPwYp/j99kcXguAKTFemI7gJbRpdiuAFSik7zQjMxh0IerEQU/Q1AnOwGsEadGKk8qA23IDgFI3egOArSik73Xh0Yh2CjfgXHO6/vQjLEQSLcKDycO9HcL5G+6Ib67GrUsqgcBC60IOgF/chCJbjGcpAnoTgTgzX6PsIXqqUMqhMxW0IgmAhRim/z9UITtdoNoLvKKUMSm/BPJyobKtOBJ/RaHdsxGbsrZRSWsCRCO7HaI2+ieBVSimlRfwCwfM0OgvBxUoppUW8GcEXNRqPteg5lAOVUkoLOBA9WIvxtvBxztvA9eFNSimlRfwQGceLbCE8LyT8XCmltIJzeek9XN7LN2whjAr3hoSjlVJKswt7hc1hU9jDFsIFIeFdSimlFYQLQ8I5thDOCAnXKqWUVhBeFhK+ZwuhPdweEp6klFKaXZgQ1oWesL8thH8KCe9XSimtIHw1JLzeFsJTQ8LNoU0ppTS7MCskXGoLoS3cEBKeqpRSml0YHe4PCYfbQnhfSPgnpZTSCsLnQ8LbbSEcHxLuDMOVUkqzC88NCVd7mLA8JJyhlFKaXRge7ggJT7CF8M6QcIFSSmkF4Z9Dwt/bQjg0JNwfxiillGYXTgsJ14c2WwjLQsLzlVJKswvDwoqQcJIthDeFhIVKKaUVhPNCwkdsIewXesL6MEEppTS78JSQcFtot4XQFd4bJiqllFYQfhUSnqmUUlpZODcsCMfYQhgXxiullFYUJoXzw+0hIeHOsCDsp5RSWkE4INwQ1oUPheeFPwnvD2vCrWGKUkppdmFR2BRO8TDhxLAxfE8ppTSzMDn0hgsMIHwiJByjlFKaVTgrJJxtAOFFIeEcpZTSrMKbQ8LpBhBOCQnvUkopzSq8KSTMMIBwckh4p1JKaVbhJSHhFQYQXhgSZiullGYVDgsJnzCA8OGQ8ESllNLMwg/C2nCUhwmHhtXhJ0oppdmFo8I94Y7w6vCEcEz4q7Ay3BueqJRSWkE4MnwrdIeEhO5wYThGKaW0mrBrOC4cH3ZTyiDzfwEwHrKu1QqHrAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMy0xMi0yNFQxNzo0NTo1MCswMDowMNpWe8kAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjMtMTItMjRUMTc6NDU6NTArMDA6MDCrC8N1AAACY3pUWHRNT0wgcmRraXQgMjAyMy4wOS4zAAA4jX1VW47bMAz8zyl0gRgkxefnJlkURbEx0Ka9Q/97f5S0N2stKtSOiEgZUUNyqJxaPd9v337/aR8P3U6n1uA/n4hovzoAnN5afWmX1y9f7+36eLk8V67rz/vjRyNpFLkn38/Yl8f69lzBdm3nvphIN2tnWljBwRsssD3HXnpHukhAO8MSiog0QfZC0iKAQb2Q6AIx88mFxPzdgXHzCW4OE6S8I8Wcdp7gbDpB6n46M3JIMUZnjplPSyQsZHmi1BbnjjYLyNuaq6YRlix5IQXsOAFGApNkZ1couoqEvU+ACPvZ5IFWgTOq4hRZFUpPHpn3QoIJicyQVSFaDEUqnuShIaWAf5FVIV7QFHk73cnnkSNvSMXMdrFTsBTIDFgF6os4e1jyNUDrPAPqxhKJSTSBXaFP65h5qWSmcHpmKwsqrDI92qvikJ6odyrf2CmmuYwdaWFApUc1y7TPxA67ikDYM69JA5R0Fg/hjkxJJNNEiodnK02QtCN75oazN5cuIjxF9l3tEhmKJjKbU2FWc+JMUmrcLSUnWYBQYJ/FnrfB2jTVg+zlKdgdZz35er99uiH2O+Oy3m/HncE56LgYOEc/up9rHC1erxx9nJOmR7NiTu3oSMrhR99hTuPoLqwxNhFuBodm4TJIQ1NwGeyD+LkM8iByLoMyqLmmKdZBtrgZG/SJm/FBiFwGYxAcl6FRWFyGcBAQlyEahMJlqA+CwG2Fh8JjcSYZCsyVz4+57tk5tmyExwTSRliHBFIRrtN8lMNY/Jo//2zy++kvTXNAwb5v7toAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAATB6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAGJUtkMttxDAMRFvJ0QvIAv8fLHLaAlyE2tjiM7Kjk/Q4JGd0/X74+sixdB1rHddrLX1deD33pfJasvZh+fkeNDO6k8dpU4JYx5umZBb5OGWWKed482S1inHyDJZ/kVSjdtI0jtgM1+wkqUEzMgFvpiGqMmQyqzQQT29mA3HNAJCpSTdQxwHRWWmVQ2cHWd0auOsaaK6uh5BbMQhRSGyX1KWMMeYWGIOVYqgwPJCiR9FsjTfWJRwb4lDZ9ktpGBGTkm0HaKvi2hLOYN85S4pT9thkuEQOjnbdi6PaY2soXZ4IqFaRbdhU+Th2ZJCNuBxm76RZ7n3LgpnlYe7wiwYLKr5bzbYLRafZ84vsWXqLkKHG6/sHNMJoeAF8a70AAAAASUVORK5CYII=) |
모습 |
---|
플루오레세인은 짙은 주황색/빨간색 분말로 물과 알코올에 약간 용해되며 수용액은 반사에 의해 녹색으로, 투과에 의해 주황색으로 나타납니다. |
관련 화합물
힐 시스템의 공식은 C20H12O5
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |