몰 질량 of Decamethylcyclopentasiloxane ([(CH3)2SiO]5) is 370.7697 g/mol
[(CH3)2SiO]5 중량과 몰 사이의 변환
다음 물질의 원소 조성 [(CH3)2SiO]5
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
규소(실리콘) | Si | 28.0855 | 5 | 37.8746 | 산소 | O | 15.9994 | 5 | 21.5759 | 탄소 | C | 12.0107 | 10 | 32.3940 | 수소 | H | 1.00794 | 30 | 8.1555 |
몰질량을 단계별로 계산하기 |
---|
먼저 [(CH3)2SiO]5에 있는 각 원자의 수를 계산합니다.
Si: 5, O: 5, C: 10, H: 30
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
Si: 28.0855, O: 15.9994, C: 12.0107, H: 1.00794
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 ([(CH3)2SiO]5) = ∑ Counti * Weighti =
Count(Si) * Weight(Si) + Count(O) * Weight(O) + Count(C) * Weight(C) + Count(H) * Weight(H) =
5 * 28.0855 + 5 * 15.9994 + 10 * 12.0107 + 30 * 1.00794 =
370.7697 g/mol
|
화학 구조 |
---|
![[(CH3)2SiO]5 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEmCAYAAAD/SCz7AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETYUGeqfpAAAAAZiS0dEAP8A/wD/oL2nkwAAK0VJREFUGBnswQmc1nWhL+DnfRkERBQUEHfNJVfMNBc0S3OhzDSJsixPHdrrRNmi3aywY2Vlnbhmlp4269Q5Foq5ZKloZVmikgsmWm7hrrkBCsPM9/a5/+6dCGYcYLZ33t/zKIoBaCQ2UBRFMUi9DOfjSQTBElyIfa3oETyOsTo3Ho/jIUVRFANEDacjCB7HL3AR7kLQhvfq0IZgvM5NQNCqKIpigPg3BMvxYQy1oil4Gl/QoQ3BeJ2bgKBVURTFALAenkJwks5NsKI2BON1bgKCVkVRFAPAWxA8inV0XxuC8To3AUGrovi7uqLoP/up/ALLFEUva1EU/WcrldutmWlYZNVGKYp/0qIo+s/6Kk9bM59TFKuhRVH0n+dUhlkzx+MpqzYa31MU/6BFUfSfx1Q2s2Z+jkes2gRF8U/qiqL/zFOZpCiKYpDbGe0I9tJ9bQjG69wEBK2KoigGiIsQzMfGVm04WnRoQzBe5yYgaLVq47ET1lUURdFHNsW9CB7BJ/Fy7IUp+Aoew2t1aEMwXucmIGi1ok1wGYKleA6fVxRF0Uc2w08RBEEQBE/jX3RoQzBe5yYgaLWiy/EDjEYNxyI4SjHo1RTFwLEdDsGmWAeP4Vb8Es/q8GbUcR6es2rD8Xq04wc6jMViPKvDM/g8PqcoimIQex2WY19FURT96FW4HG/S887C7ViGYxVFUfSzdyG4UM/bB2/Ej/EwdlIMejVFMXBtjPuxHOPxtJ5Xw3xci2n61lDsg50xBo/jRtxoRbtja9yGO3VuX2yMG7BQURQN55cIjtUzRlrZVbhQ33o3HkIQBEFwI16swzkITtK1SxG8WbFKdUUxsM1SmWLt1XAFvo5xGIbj8FL8Qt/5Ms7CxrgM78IxeBeuwB64CtspiqKpbIZ2LMZIa28vzEUQLMLnUdc3Xo2gHW+1atPxcdRUzkFwkq5diuDNiqJoWNcieK2eMxZbYx196xoE39J95yA4SdcuRfBmxSrVFcXAN0tlip7zGO7BMn1nLCapfE3R5+qKYuD7CYLXYLjGtQdqeAY3Kfpci6IY+O7BPLwYr8AlGtN4lfvRbvX9G16vc9squtSiKBrDLLwYU3CJxjRMZak1MxrDdG6Eokt1RdEYfqJyNIZqTE+rjLJm/h1jMRZjMRZjMRZjcYWiS3VF0RjuwHyMwcs0pntVtsQIRZ+rK4rGMUtlisZ0E5agBYcq+lxd8f+8AJMxFa/AGCvbGrtjQ13bHrtjlKInzVJ5LYZoPMvwPyonY4ii6GNTMR9BEATL8H1srMNsBNN0bS6CyYqedjuCAw18NUzH6Tpsg6cRzMJYK9sdh+pwDoKTdO1SBG+2ouH4F5yGE7GTJlXX3E7FedgZ83AqTsDpWIg34xqMUwwUF6hMMbCNxyX4Kk7Arip3YyoW4Rjcg5/iDPwQN+MPmKlnbIwb8EGMwaG4BVMVTeVIBO34AGpWNAzfxWmoq8xGME3X5iKYrOhpeyFYiJqB6RW4H8GjONLKXoBv4zEEQbAEv8BU1FS+iTZ8TNcuQhvepMOh+DaG6DAL1yuaylwE5+i+2Qim6dpcBJMVveEuBPsaWFowA20I5mAzXatjE+yIrTBE7/sOblI0jW0QBC/UfbMRTNO1uQgmK3rDVxB8ycCxNX6DoBUzMMTAsQF2xgewGK9TNI2pCO63emYjmKZrcxFMVvSG/RHcjZr+NxVPILgH+xt43oknEVyA0ZpQi+Y0QeVua+a9OELntlP0pmvxALbGizBP/xiF0/FOlVl4B54w8JyNs7EZZuF8HKxoCiciuMLqmY0gCIIgCIIgCCYresvXEJyqf+yJOxAswXSN418QjNZk6prTIpWR1sz7MAqjMAqjMAqjMAo3KnrbLJWp+lYN0/FbbI/52BszDUwb41Ar2hytWKpoCkcjeMTqmY1gmq7NRTBZ0VuG4GEEu+gb43AJgnbMxDAD23FoxdfwDnwRS/AfiqaxGYJgd903G8E0XZuLYLKiN52N4FN63yvwAIJH8GqNY398B1fhAhyPmqKpXI3gv3TfbATTdG0ugsmK3nQ4gpv0nhbMQBuCK7GpomgwL0Mbgk9jiJVthl10mI1gmq7NRTDZiuo4FO/FVKyvWBtD8TiCF+p5W+O3CFoxA3VF0aA+jHYEd+A/8GF8AZdhOS7VYTaCabo2F8FkHcbh97gPl+EePI49FGvjewhO1LOm4gkE92B/RTEIHIrfoh1BEAS34D06zEYwTdfmIpisw9swG0NVhuIGXKhYG69BcJ2eMQrnIgh+jNGKYpAZj/1xGF6K8Va2EbbASF0bjy0w3IpqVvQT/FqxNobhKQTbWDt74U4ESzBdUTSJGsbqHaNwLJ7FGxRr60cIPmTN1DAdSxHcgB0URZPYA/fiaj3vFATBORiiWFtHYTYOt/rG41IE7ZiJYYqiiayHZ9GGTfS89fEKLMSZiv5yCB5A8AiOUBRN6qcI3qX3nIQlqOkjYdPwvnBuuCScH74ajgxDNKbheB1OxTdxCt6CjXQ4Gj/EFAzFDLQhuAKbKoom9i8IfqFnbIgdrOgzWISaPhBOCktCQkJCQkLC/PAijWVfLEQQBEHQioNVTkZwCsbgHrRiBuqKosmNxlK0Yqy19wk8gffhEJyARfiqPhA+GxKWhBlhhzA0jAqHhKtCwlNhF41hQzyGYA5eg91wID6Iq7CByubYH1uoTMJLFEXx/12G4K3WXg1vx69xF+biI2jRy8I+oS20hoOsQhgSfhIS5moM70ZwK4YqimKtvAPBRRpY+FFI+IYuhI3CopBwoIHvSwi+5/nti49ikqIoVmksWvEcNtCAQi08HhJe6nmE/w4JnzPwfQLBHRipaycjOEXRtOqKrjyGX2MYjtCYtsCGKvM8v+tVdvd3oRZqoRZqoRZqoRZqoRZqoRZqoRZqoRZqoaZSQw011FBDDTXUUEMNNdRQQw011FBDTYeLEWyP63AkhiqKTtQVz2eWyhSNaSOVZ2ss8vweVdnI34R3oh3taEc72tGOdrSjHe1oRzva0Y52tKN9MUvQjna0ox3taEc72tGOdrSjHe1oRzva0Y52HKNyE07AcuyMn+J+fBk7KYp/Ulc8n1lox2SM1HhqKtE9UampRA+oET0nOnwVu+CzuBfjcALm43RFUay23yCYosGEbUJCwnDPI3wwJPxM46nhAPwXguB4lZMRnKJoWnVFd8xSmaLx3IdnVHbz/HZXuVXjCa7BcThT5e2K4u/qiu44H8GRGK6B1GjDr1SO0YUwHEeqXKmxXaiypaL4u7qiO+7BDVgPh2o8X1d5f9hO5z6JjXAHfqGxbaPylKIoVttJCL5rgAv1sKt/EM4LCX8JR4S6vwujw+khYXl4mcbwarwTG1nRbrgfwWkqJyM4RWV/7K0oilXaHsETWMcAFTYOl4Vnwvb+LgwP54WEhMfC78MtYVlIeDq8VuO4HMEy3IxfYB7aENyM0SonIzgFY3AvWjEDdUVRrORmBIcbgMKR4dGQ8ECY5J+EQ8K5YUF4IjwYfh8+EzbWWLbEx3AtnkXQjj9iBtbT4Sj8F6agBTPQhuBKbKooihV8GsHZBpAwLMwM7SHh8rCJ5jMSNd13CB5A8AherSiK/29XBI+ixQAQdgzzQsKyMCPUFd01DpcgaMdMDFMUxf/1RwQv18/C8WFRSLg97KFYEzVMx1IEt2JXRVH4LIIz9JOwfvhhSEg4N6ynWFt74g4ESzBdUTS5FyN4EHV9LOwd/hwSngrHKXrSKHwTQfATjFEUTezPCCbpI6EepodlIeG6sJ2it0zFEwjuwf6KokmdjuDL+sbmj/PjkNAWPheGKnrbdrgOQSs+PoO6omgy+yG4GzW96yg89lJua2dhmKzoSy2Ygbb3cG2YEzZTFE2khvsQ7Kl3jMCZCIKLXs5YRb8YziGtLAgJj4RXK4om8r8RfE7P2wl/QPAcTkRd0a/CuHBxSGgP3wzrKoom8DIEd+hZx2MRgj9iD8WAEWphenguJNwadlMUg1wdDyLYzdrbAD9CEJyLkYoBKbw4LAgJS8J0RTHIfQPBDGtnH9yF4Cm8STHghRFhZkhImBXGKIpB6lAEt1gzQ3AiliH4PbZVNJTwuvDXkHBvOEBRDEJDcSr2tvq2wC8RtGMmhioaUtgqXBMSWsOMMERRFEbiQQQLcZCi4YWWMCO0hYSrwmaKAeU9uBkn6dqncTP+1ZrbCWfiVjyFJbgDX8M2GteO+A9cgwX4Db6PYzFK5Y14CF9S+QguxEaKQSUcEh4ICY+Gcf5BWC98JPwqPByWhofDL8MJYaSi18xAcIaunYPgJGvmI1iOoBXzcROeQbAYR2k8b8BzCILH8ByC4DiVt2IpzlSpoaYYlMLYcFH4mn8QXhQWhoT2MD9cFeaH9pBwX5io6BUzEJyha+cgOMnqOx5BcDrG6DACH8Iy/KfGMg7PIPg6xqrU8EJ8HBsqmlKohaH+LmwaHg0Js8NW/kHYOlwaEh4JExQ9bgaCM3TtHAQnWT0j8BiC03RuV43neATzUVMUXQjfDwk/D0OsQhgafhUSvqvoUXW972hshCdxis7dqvGMVXkQ0bXD8DN8QNF0woZ4vcrHarRZhRqt+KjKsWG0osfU9b4DVC7DswaXhSoHYJKubYHJ2FXRjPbDOri3xk26UOP3eADDsK+ix7To8AK8Vue2smZeoDJf962PvQxcC3A/LsGD2ARX49s4F79VFCvaQeU23TMfm2IHXKboES06vAqv0vM2UHlS9+2CKw1c78eZWIzD8UPsinfhXbgd38I3sEhRsIHKU7rnCZUxih7TosPVOE/njsP+Vl+rylDd9xSuMnAt1OEWTMR+eAumYkd8CdNwAB5XNLtWlRbds47Kc4oe06LDrThL516M/a2+x1Um6L7bcLDGEfwWv8UHcAy+jh3xObxL0eweVZmgeyaoPKboMXW97yaVvTWHVvwP3q9ypKJgnsruYR1dCCMwUeUGRY+p630/VzkQ22ket6iMVRTMw/0YhWN07fVYF/fgFkWPqes5IzHEyn6Ha1HHdzDSqtVQM3jsr7JQ0fRqLMdXVb4UNrcKYWucpnJ6jTZFj6lbe6/B7ViEZ3EptrSiaXgSB+AGvA3bYWPsi4/hdhyssRyPC3EsJqisj+PxBZUfKIrKV3E1Nsd14b1hq7Bu2Dq8D7/DBPwcZyl63AwEZ+jaOQhO0mESFuF4jMceuBlXW9luuBFBEARB0Ip3ayzfQBAEyxAEwYUYpjINwdmKphVGhO+EtpCQkJCQ0Ba+GYYpelwNL8VLcT1+oXOvxB64CteqDMVuuFGHj+EUjLCyOl6Og7A5huER3IxL8ZDGsyumYE+Mx1LcifNxqQ474EDcjmsUTS3siKOwMzbAk5iPC2vcoWgILbgCv1QURTFI7YPzcReuwSaawxY4HXsrirUURocPhy8pBrRt8F78B57AiZrDhxD8t6JYS2Gj0BqWhTGKhvBOtGK8we8aBFMVRQ8Il4eEtxic1sPL8AYcjRejZkUjsSd20bXR2BPb60N1K3o5ghcZ3CagDUswUlH0gPDukDDb4LIlfoBlCIIguBtTdZiEYIGuTUUwRx85DH/ADiojcT4ewwiD23sRnK8oekjYOCwPz4b1DQ4740EET+CbmI4TMAvLEbxPZRKCBbo2FcEcfWQkfojleABLsRAvN/hdieA4RdGDwq9Cwhs0vqG4BcHvMN7KJuF32F5lEoIFujYVwRx9bAJeij0wxOA3Fq1YhjGKogeF6SHhPI3vWARPYzPdMwnBAl2bimCOole9HcHFiqKHhc1Ce1gc1tXYfozgHN03CcECXZuKYI5uqivWxBSVWYqih9W4H9dhXRyuse2lcrUBoEWxukbjYCzHRYqid8zCPpiCCzSujVXusfo2w0U6t4mi1x2P4HJF0UvCNqE9PB2Ga0x1BMGLdd8kBEEQBEEQBEEwRzfVFatrisosRdFLatyNP2AUDtaY2rFYZT2r706MwAiMwAiMwAiMwHFWU12xOtbDoWjHhYqid81SmaJx3a+yrdUXPIfn8Byew3N4Ds+h1WqqK1bHERiBa/CgouhdP1Y5KrRoTNepHGIAqCtWxxSVWYqil9W4A/OxEV6uMf1Q5RjsoJ/VFd01Aq9CMFtR9I1ZKlM0hq3wXayr8nP8GsPxU2xvZUNxmJ71Arwd78HeitXze159FFeN4UJF0UeWsftPuHESl2CIgW0qnkDwBR22wAIES3EBPo1P4Vw8iGCiyiQEC3RtKoI5VvQhLMaVuBKt+Kai+8IPQsJHFEXfuh3BgQamEZiJILgAG1nRGHwZjyEIguAJfAtbqExCsEDXpiKYo8NI/AF76vAmBDsqnl8YGv4aErZVFH3rNAQzDTy74GYEz2I6ajo3BLvgIByEHTDEioZiAsbq2jBMwBhd2xfBfornF44ICTcqir73EgQLUTNwHI/FCG7DRAPLUOyKq/FbDFE8v/DtkPAJRdE/7kKwj/43Fj9FEJyLdQ0s6yEIHsRExfMLLeHRkLCTougfX0HwRf3rICxE8CTeYOCqYXN8HU9iS0XXwiEh4VZF0X/2R3CX/tGCGViO4FpsozGsg2WYruhaOCsknKIo+k8d9yPYQ9/aEr9GsBwzMMTAdQBqOmyI5Xi/onOhHh4ICRMVRf86E8Gp+s4U/BXBfXipgW0c/orzcTReh2vwKCYoOhcODAl3Kor+dzCCBXrfCMxEEJyPDTWGbfFt3IrbcC62V3QtzAwJpymK/jcEDyPYWe/ZBbcgeBbTFYNbqIV7Q8JLFMXAcA6CT+p5NbwTSxDMx0TF4Bf2CQn3hZqiGBgmI/iDnjUWFyEIzsW6iuYQvhgSvqIoBo6h+CuCF+oZB2EhgifwekVzCX8KCfsrioHlXAQnWjstmIE2BFdhc0VzCXuEhAdDXVEMLEchuM6a2wrXIGjFDAxRNJ+wXfh6OEVRDDzD8Wd8A0OsvtfhrwjuxQGKoigGmRGYiSCYhQ01kZomF7bBq7Ad1sUzuAU/q/GIouhfI/EK7IAaHsKNmK/DB7EZvoyHrNqL8SPsgGfxccxUNIewXvhOaAsJCQkJCUvCv4chiqJ/vBlPIgiCILgFLSrzEEy0shqm4zkEt2I3RfMIw8K1IeGBcELYPWwT9gmfDYtCwvcVRd97BdoQ/BjHYTLejv/CbB0OxeuxgRWNw8UIgnOxrqK5hM+FhDvDJlYh7BWeCQlvUhR96xIEZ1ozB+N+BI/iSEXzCaPCUyHhEF0IJ4aEmxRF37oLwWs8v8l4E0ajBTPQhmAONlM0p3BESLg31HQhjA1tIWFLRdF3bkJwiuc3D8FE/CuCVvwv1BXNK3wyJMzSDeGOkHC0oug7X0HQhi9gY52bh2Ai6vgW9lMUYWZIOFM3hF+HhLcrir4zGtcjCFpxMV6LoVY0D8FERZfqms8QlTbd06oyVFH0nScxCf+Kq1DHETgfd2JvxWqraz5PqYzWPWNUnlAUfWsZvoODsTU+hoXYChdjtFV7NzZWFOH4kHC95xGGhiUh4UWKov+NwwMI3q0yD8FEHIXgQRymaG5h69Ae2sLmuhCOCAmPhiGKYmD4JoLTVeYhmIjx+BmCdszEOormFS4LCd/TiTA0XB8SPq8oBo4LEfy7yjwEE1VqmI6lCK7H9ormFHYKS0LC18P6/kHYLPwsJNwd1lcUfett2M3KXolWBAepzEMw0YpegjsRPI13KppTOCQ8FRKWhKvCj8NvQ2tI+HN4oaLoW+vjWQS3Yxa+g98gCH6owzwEE61sffwAQXAeRiuaT5gQvhRuD20hYVm4PpwYRiqKvrcOpuJ8PIMgCP6ED6FFh//EL/ECnTsezyC4G/spmleoh9GKYmCpY3O8AOOsnR1wA4JWzEBdUYQtwyRFMfDU8RLUrL6hmIE2BFdgU0XzCnuH9vBHRTHwHIjgKmvuEDyA4BEcoWhOYUh4OCTsoigGlpkIPm/tjMelCNoxE8MUzSecHRI+pSgGjhruQ7CXtVfDdCxFcAN2UDSXcHhIuElRDBz7IrgPNT1nL9yJYAmmK5pHGBoeDwkvVBQDw5cQfFnPG4XvIwh+jNGK5hC+FxJOVBQDw58QTNJ7puJJBPdgkmLwC68JCdcpiv63B4IHUde7tsZvEbRiBuqKwSsMC0+FhG0URf86FcHX9I0WzEAbgiuxqWLwCj8KCR9SFP3rjwgO0rcOwQMIHsGrFYNTeF1IuEZR9J9dEDyKFn1vHC5B0I6ZGKYYXMK6YVFoC5sqiv7xKQRn6z81TMdSBLdiV8XgEs4PCe9TFP3jJgSH63974g4ESzBdMXiE40LCHEXR97ZD8ATWMTCMwjcRBD/BGEXjC6PCs2F5GK8o+tZJCL5n4JmKJxDcg/0VjS9cHBLerij61lwErzEwbY3fIGjFDAyxsl3wBfwat+NWXIxpGKrDTrgUZ+vaAbgUn1f0rPC2sPxOvq0o+siP2GJn7sYzGGHgWgdfRDuC03So4TS0IQgewZMIgpuxmcokBAt0bSqCOYqe9T022pgHsRSjFUUfCB8MeZhvaAyvwK3YUod/R7Acn8EEHXbGTxF8RGUSggW6NhXBHEWvuBzB8YqiD4RrQsLrNI66DttjOYK3W7U6DtVhEoIFujYVwRzdVFesjlkqUxRFLwsTsB+exc80jnYd3o4hmIv/tGrtuFwfqCtWxwVow+FYX1H0rimo47IaizWmA1XOMwC0KFbHw/gNDsQr8T+KovdMUZmlce2ocrPVNxx769x2il73AQTnKYpeEsaG1rA0jNGYamhDsJfum4QgCIIgCIIgCObophbF6pqFr+IIrIsliqLnHY0WXFLjCY0paEcddavvr/iGzu2IYxS97ncIXqsoekH4WUh4m8b2CIJX675JCBbo2lQEc3RTXbEmZqlMURQ9LIzGwViOizS2W1X2NADUFWviJwheg+GKome9Buvg6hqPaWxXqrwRQ/SzumJN3I0/YBQOVhQ9a4rKLI3v21iCF+IT+lldsaZmqUxRFD0krIdD0Y4LNb4HcYLKKTgXe6IFLdge0/F7rKdnTMD38AAexWXYQ7FWdkDwGFoURQ8IbwgJvzS4vBvPIAiCZQiCVrxMZRKCBbo2FcEcHUZgAX6ISdgfl+ERrK9YK/MRHKIoekA4LyR8wOAzHu/Hj3AVrsAP8EFspcM2OBOf0rU9cCY+oEMdR2OIDnsgOECxVj6D4CxFsZbCiPBMaA9bKnrKu7EUmyjWyu4IblEUaynsHh4Ov1esrXXwRVyAB3GMv6kr1sZNeBlepCjWUo2bsCmOUfSEp/Ew6jgM9RrWw3pYjGd0bn2si2ew2NrZDFugBffjboPDSIzDo1hsRWOwBR7H/YqmF0ZhW4zBE/hzjWcUPW033Iyj/c0MBGfo2jkITrJmWvB+3IkgCII78BbUNJ4a3oVb0Y4geBjfxkSVaQjOVjS1sF/4eWgNCQkJy8JlYR9FT6rhWZzYom8Mx/l4pcq1uA7LsTMOxbl4ET6ssXwVH1CZhz9ifUzE2/DfuBn34WLcpGha4R04C0NwGy7HQ9gEh+FwvCK8u8a3FKtrI/wYJ2KuyhswHH/wNzMQnKFr5yA4yer7CoKncJiVvQh/wls0lp3Qjla81sr2xDBF8Tdh/7A8tIV/CzX/INTDR0N7aA37KlZXHV9BK27BH9GOr6Dmb2YgOEPXzkFwktWzCZYheIPOtWg870FwjaJ4HuGXIeF0XQhnhYQ5ijW1BY7GFGzj7+p63xQMxZ9xns4t13iGqqzj+b0NbfiGoumErXEg2vBlXfs82nFQ2EKxJv6C2ZiFu/1dXe/bW+UKxOBym8pL8AnUda6OOuqKZrSfym01HtSFGvfhDpX9FD2mRYeX4yyd29+a2UTlz7pvS7zXwDUbv8Mc/AoH4lS8DT/Ad3GPouiwucpduudP2BFbKHpMiw67Ylc9bz2VJbpvM5xo4PoLfod2HIFT8FZsi0/jk7gCH8eNioJRKkt0z2KVUYoe06LDufiMzn0Wb7D6Fqusq/vuxccNXNfqsAgfxv/Cq3AcjsBheCkOwI2KZrdIZYTuGamySNFjWnR4Gn/WuWesmYdUttZ9D+A0jWUpLsAF2BQ/xZ44Fa9SNLsHVLbWPduoLFT0mLred73KyzWPB/ARlX0VBb9X2SVspAthAnZU+Z2ix9T1vgvQhp1xuObxjMq6iqZX405cj6F4j669H0Pwmxr3KHpMXc/YBkfjEKxvRffieyrfwe5WbVusq7FsgBFW7Y0qtyqKyqdVPhFeZRXCUfgogk8relSLtVPHV/EOLMB4DMOxuFyHE7AbXoK5mIVf4ylsiwNxEN6K72sc78VHMRtXYyHG4Ggcp/JlRdMJQ/BJPFbja/6mxqXhVJyMi8OFuBSPYRyOwJGo4eQaVyp63AwEZ+jaOQhO0uEA/AlbqrTgAtxpZevhi1iEIAiC4EYcprF8AH9BEARBsAjv02EagrNVjsTJGKIYVMKW4dchYXEY5x+EN4a7Q0JCQkLCn8IURa+oYVNsiofxF53bCuOwEA/psA6W6fBxnIyRVm0YXoItsQ4exU1YqDHVsQ/2wjgsxZ34OZ7SYSQ2wiIsxV0Yj6vxZtyvaHjhtfhPbIiHcXyNX/gnoYYXYWesj6dxK26uEUVD2Al/wlmK53MQFiJ4Eq9XNKwwPMwMCQmzw0aKQelIPIPgaozQHPbEzfg3a2YsfoogOBfrKhpK2DncFBKeDdNDTTFojcR2eCVuw0Waw+cRzLTmangnliCYj4mKhhCOD4tDwh/D7oqmciSC7Qx+tyM40NrbBTcjeBbTFQNW2CD8T0hIODeMVAxqNWxrRa9GsLPBbSKChzBEzxiBmQiCC7ChYkAJLwt/CQlPhmMVTeEoLMb7sBtehdtxA2r/pz14ga67oA8A/N30Ni0WaqE0DW0p8lLoPIKIFKfDgagBBwJFEBaZEj1ubKPC0dEjzFEnyHb26uYU6eRoYcrUYoBZGUWpoFaIp/KsRZCDIFAKxQKF0DS3v+349ywUk5v0keTe3N/3GdsWIvAFO98peAaBR3CUNOqCcnBx0BtE8ONgP6mhfBB3ohvrsAStxr57ETjW8JiN2xDoxWUYL42KKezzEiuCCHqDhUFZSg3gtQg8jbLhU8ZnUBnH40/w7WBvaaSdjPUncEvwaHCUlBrIhQhcaWQcfS03BxGsD06RRsKrcAUCUWLpr5gqpQazCoH3GCHBlOC/gggiWBJMkobLHNyNQDfmoySlBvMabMFzmGiEBWcFLwQRrA4OkXa2s/ACAqtxiJQa1McRuNooCeYEdwcRdAfzg5K0o/bE9QgEluBVUmpgKxE42SgKJgaLgggi6AymStvrD/ErBDbgdCk1uJnYghcwSQ0ITg7WBxE8Grxd2hZlXIxeBFZiXykl5yLwDTUk2Du4NYigEiwKxkuDmY3bEOjFxRgnpfQb30fg/WpMMC64OOgNIvhxsJ9XCJqCNwfnBH8TXBCcEbSqb7NxEj6I9+BAW3sz5mOuwjw8g8AjOEpK6f9NRy9ewmQ1KjgyeCioBEd7meCdweoggggiiCCCSrAkmKq+zMAybEEgEAiswREKFyGwEK3YiMA3sbuU0lY+isB1alwwNTjNywTvDzYHEXwnaA/eGhwbXBg8EUTws2BP9aEZ9yLwOC7FR/AJfBUbMFNhLs7HWxT+BB+VUurXTQicpc4ErwmeDyKYrx/BHsGqIIJvqA9nIPArTPO7xkspbbPd0YMe7KHOBIuCCP5bFcHrgt5gS3Cw2vd3CFxlcLNxFPaRGlaTNBQnYTy+i2fUn5MVvqiKEvfjuyjhZLXvJYUDDO4sfB9nSw2rSRqKeQpL1ZlgOvZWWGlwP1A4XO37ocKRuAYzpFRFWRrMbngHKrhe/Zmu0FPiaYN7TKHF/wlOwiftoAo9ZZrtHH+FFViOr+JMnI5TcTOuxHXYJKWXKUuDORETcQvWqT/NCj2GZpPCRIUWvNkOGkc3drFz7KEQaMcN6MAxeDfejadwLq6R0m+VpcHMU1iqPj2rMCkYV6KiulcrbFD4Fu60g14kULJzPKBP4Bpcg1k4HR/GQbgaa7FCSmlQr8JGVDBDHQomBpuCCA42iODfggi+oH6Nx40I3KBwEQILpYbVJFVzPCZhJR5Xh0q8hJ8otKkiKOF4hdvUr834V4U5UvqtJqmaeQpL1bcrFc4PJhvYB7Af1uNb6ttkhV4ppUFNwLMI7KuOBeODnwQR3BrM8grB+4IXggg61IdDcIjfNQldCFypcBECCxVmY08ppd84EYEuY0Cwd3BfEEF3sCxYFPxHcG8QQQSXqB/XILAaV+DTuBxPILAe+ytchMBClPEjrEWblJKvILDAGBFMCi4M7g8iiCCC7uDG4Gj15QQsRTcCgUAFy3CQPufgQZyLqViBQAWXoiylBjUe6xF4nTEo2D04OJgdTFDfmvEGHIMjMcXgSpiPHgTuwAFSakDvRuAuqR5Mw0Tb5wj8AoFn8cdSajC74CScJNWDz+N5nGb7TMZXEQgswa5SSqnGNOFxBN5gx5yFjQiswRulNMY042wsxT14CHfichxmaxdjOdpU9zksx+HScDsKgZ/bOQ7CTxHowcVoktIYcBAeQCCwEY+iG4EKPqVPJwIdqutCoE0abosQ+KydZyIWYQsCN6FVSnVsGh5H4G68A+MUJuBMrMOjmK7QiUCH6roQaJOGUwm/ROBwO9+7sBaBJ3GclOrUFQj8HFP0bw720qcTgQ7VdSHQJg2nuQg8gpLhMR03IrAFi9AspToyCS8gMM/QdSLQobouBNqk4fT3CPyT4VXCfPQg0IUDpFQn3o5AN5oNXScCHarrQqBNGk4PIvBWI+MIPIjAc2iX6kpZY3qtwhr02Hb74/cNbFdpuL0R+2MtVhoZd+AwfAFn4iq8C+dgo5Rq1McR+J5t04lAIBAIBAKBQCDQJg2XzyDwOaPjLDyPwEM4Uqp5ZY2potBk+1yPnxrYRzBDGk6nKCw1OpbgdnwNb8StuBSfxhYp1ZAPIbDatulEoEN1XQi0ScNhDgJPoWx0TcBlqCCwHHtJNalJY7pH4UBMlurNqQqd6DW6NmEBjsNaHIs7cZxUc5o0pruwDmWcIdWbeQpL1Y6bcChuRAu+jUVollINWIjAOuxraDoR6FBdFwJt0s62HwK/RrPaU8J8bEKgCwfq31twGa7HLbgOn8J+tvYBLEab6s7FYsyV0itMxF0IPIlzMEthGo7FVfhbfToR6FBdFwJttvZ+3IUX8TA+i2ZpW1yAwFfUtiPxEALPYo4+U3ADAoFAIBB4CefpsxiBBapbhkC7lPoxFTciEAgEAoHAbfp0ItChui4E2vRpx3q04/U4A8/jEmlb3IHAiWrfZFyN/0GTwnjcjsBT+AvMwjjMxMewAd04UGExAgtUtwyBdqlfZY1tPdrwNpyA12ESXsQa3IKb9bkBv8R9qvsafoSH9fkejsftCvfiRBwtDdUsHI6NWK72PYd27IItCh/DEXgWf4A1+jyGf8FtGIcHpDRGTMAaLJaG6jwErlGfSngYgQsM3WIEFqhuGQLtUr+apJH2TlyO+3A/PiEN1TyFperTfthH4WppxJWlkdaNJ/EAjsChWCENphVvQTe+oz79nsKTeMy22w0zDGyClGrYl/FzaSjOQeBa9euDCNxj2yxGIBAIBAKBQCAQaJf6VZZG00/xAYxDRapmnsJS9SsUwvZZhXsM7FjMlFIN+AiWYKLCbvghVkmDmYrN6MHu6td7EXjMtlmMwALVLUOgXepXkzRSfoA3YS1W4VHMwtnSYE5GGcvxa/VrtcIMtEgjriyNlJ/hDXgT9sE6rESPNJh5CkvVtwfxGGbiNHxOSim9zBRswmZMU/8uQuBJzDI0ixFYoLplCLRL/WqSUm07Ac1YgafUv3/EarTghzgVE/SZjQvxSTvPYfg6VuM2nI/xUko1pxOBPzV27IXbEQh042E8i0DgYZQUFiOwQHXLEGjXZy6exyX4I5yHjbhMSqmm7IoXUcFexpYmzMNVWIVf4B4sxblo0efPcR1OUd1f4zq8XZ8DcZqt/TvWSCnVlNMRuFXamZZjuQZUllLtmqtwrbSjXo/jcAxmYJ4GVJZS7TofX8TT0o5qwevRihKmSCmNugmYiX2wizQcvoRHUJJSGhUn4rt4CYFAL1bgnba2Cb2YZmDT0Ytu6ZXORGCalNKIasIVCAR+iW/iKtyJQOACfSoItBhYKwKbNbaj8c8oK5SwBE9hnJTSiLoAgR58GCVbOxZP40J9Kgi0GFgrAps1tkPxCB7Et3AfXsSpUkoj6tXYiMBfGtirba2CQIuBtSKwWZqEefg4OjBLSmnEfQiBJ1A2dBUEWgysFYHNUvqtJimNniMVlqNXSsOsLKXRs7fC/bbPeXhB/3aV0iuUpTR6dlPYaPsskNI2KEtp9HQrTLR9TsIG/dsD10rpZcpSGj1PKext+6zEOv1rldIrNElp9KxSeJuUUhrjDsAWBN5m6CoItBhYKwKbpZRSjfg6Ag9iH/2bjGZ9Kgi0GFgrApv170DMxZ5SSmmETMP9CDyHf8B7cQzOxpewEafpU0GgxcBaEdhsa/tiJbqxHr34PEpSSmkE7ImrUEEgEAgE1uJ0fSoItBhYKwKbbe0mXI5dFI7DFrxPGvNKUqod03E0ZqIZz+Bu3IGKPieihO+gR/8moA1bcIM+u2ETehRKeA6fxaVSSmkM60APDpNSSmPUf+Jx9OBUKaU0hh2M43ElNuBQKaXUAO7Gl6Uxr0lKjWV3lGxtA6ZIKaUxpIQ7cDX2x3T8GSo4W0opjTFzcDN6EViHBVJKaQybgN2lhvK/Bz5FL2K3UvsAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NTQ6MjArMDA6MDD+38YuAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjU0OjIwKzAwOjAwj4J+kgAAAZd6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI2FVNtugzAMfecr/ANEdu552ENbqmnaCtLW9R/6vv/X4jAaR2JpIJFjjDnxOWYAHp/T+/0HHkNPwwCAnTulBDeDiMMF2IDj+fVthtP1cNw8p+V7vn6BRr7L1cYerstl8xCcwChv0QUPqGIkH2I2sIz6poavO2hldUBH4vnDgNvh48Vu4UamHTt5LSxAKnnjtIOR8ge8i24n0DEAVMEV96iVwai9+ReBzwhqYqMopmRpJ3HIgah09DaUwGBstGEnMGaoYxfBFpkY69g9VguWMmmc8a+82YrOUMCd3MSMZZj2eclIM+IeaY9I0yJ+Dtg2KHogXHO03sl8U+BOfSk0YniqBYqS4w7FlKRqOqLJjSV02zn+eZ6afls78LjMU+1AvnRttLwBUxuJt7a2C+XpalNQnr5qnrehKpu3seqX8kxVpMQThQaLg4TSikMLPVFZjNANlUUKY/U4IYDV4wXRVJYgCKWyREHZ6kmCm+LRkgQqfzlZbFla3m8/xmwPv1jLBaeZsvbwAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAACwelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAABiVjY8xDsMgDEWv0jGRwLKxMUYZc4AOHaseoHfI4QtRE2hRpU7Yz5/v7/V+ez5oWudrLcr7V0mXbSLIypGdZyDLWdyCkKLzARgtaG2DqVTEkFgsusV/SfxpQiBBoxUUSpVwV1lkSgUxyC8VdiZtenwY9c10j9KF/eze0c/kx47z2GFpl4hBBQtDMCNN1ohvaDh93l6hXVKn/psHigAAAABJRU5ErkJggg==) |
모습 |
---|
데카메틸사이클로펜타실록산은 약간 휘발성이 있는 무색, 무취의 액체입니다. |
관련 화합물
힐 시스템의 공식은 C10H30O5Si5
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |