몰 질량 of C42H45ClN6O5S2 (ABT-737) is 813.4269 g/mol
C42H45ClN6O5S2 중량과 몰 사이의 변환
다음 물질의 원소 조성 C42H45ClN6O5S2
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 42 | 62.0153 | 수소 | H | 1.00794 | 45 | 5.5761 | 염소 | Cl | 35.453 | 1 | 4.3585 | 질소 | N | 14.0067 | 6 | 10.3316 | 산소 | O | 15.9994 | 5 | 9.8346 | 황 | S | 32.065 | 2 | 7.8839 |
몰질량을 단계별로 계산하기 |
---|
먼저 C42H45ClN6O5S2에 있는 각 원자의 수를 계산합니다.
C: 42, H: 45, Cl: 1, N: 6, O: 5, S: 2
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, Cl: 35.453, N: 14.0067, O: 15.9994, S: 32.065
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C42H45ClN6O5S2) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(Cl) * Weight(Cl) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(S) * Weight(S) =
42 * 12.0107 + 45 * 1.00794 + 1 * 35.453 + 6 * 14.0067 + 5 * 15.9994 + 2 * 32.065 =
813.4269 g/mol
|
화학 구조 |
---|
![C42H45ClN6O5S2 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAABeCAYAAABRjMPdAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEhAHXMzjBwAAAAZiS0dEAP8A/wD/oL2nkwAAGSdJREFUGBntwQe8lwWhP+DnHIagooI4cJN4xVGkJWmWDbuloi2zTBNXZWgf1EStNFfjOjBzJJkjFBy40xxpblTgvD8ciSM10wRcaAIyzznfvxdu/+rTrQvnvD88Ht7nUalUOqxNsRG6YU2L9caKKpVKpZM5Ft/AwdgKR1tsHwxWqVQqncwF/mZ9XIUDcD4Gq1QqlU7mIn+zPn6Efvg2BqtUKpVO5hv4IY7BIBxtsX0wGDtjZ5VKpfIu92mMw+pYEb3QgO4W64YuWAfHqFQqlXex1TENwSH+va3wXZVKpfIuNg7Bfeji31sXa6pUKpV3p+t2p/FlzER/lUql0nllHTKDl2ew494qlUql80oDuZmE3KhSqVTeYf2wgsU28s8GYkttlv1IyGtkbZXlWjccie/hc9geA7EGGlQqy8YR6G+xs/2jwzAM+2BjSywrkN4WyUbkIrKHynJvPIIgCIKgFa/gCYzH9bgQp2AEjsUOKpX2OwLHYhhu8I/O9zerYjoewz24Bucx7RhyOBlKdiEfIp8gE0g3MpJ0UVnuDUGwEHfgt3gQT+JVBEEQBEEQBC3YT6XSPkfg/eiDX/hHF/mbTRAEQRBaXiYhISEh3yU/IYeTkaSLynJtdUxHcDh2QxDMxHOYiN/hBozDpRiDsbgUf0bwG5VK+xyB/hY7G6vhy9gKn8fpOBbvQT9siY9hd3yL+d8nZ5BLyM1kIjmQ7El+TC4nXVSWa+MQ3IdG7I5pmI8gCIIgCIJgIlbHLARbq1TargsaLNbVYp/C7hbrih6WSgaTPckq5M+ki8pyay8Es7Cxf7YK3oMPYRfsg8PwI/wC1+AnFjsDwRUqlfL0xQcwTJtlBbIyaSD7kJNVlkvrYAaCA7RfP8xFMzZVqZRnALppt/Qlb5FWMkhludKAmxHcqDy/RHChSqVDys9IyOUqy5VhCF7F2srzHizEAmyoUulwsh6ZT5rJf6gsF/pjJoIvK99YBGerVDqknE9CLlDp9BpxD4Kx6mMztGAu+qlUOpxsTJq5/SHWWV+lUzsawVT0UT/XIThZpdIhDTwTwVkqndYQzEMrdlZfW6MVM9FbpdLxbI4WzEU/lU7pMrRiEnrjAPV1G4IfqFQ6pusR/ESlU/olgofwHIKPqp+PI5iBviqVjmcwgjfRW6XT6YFpCMYguFn5NsR5WBUvohnHq1Q6ptsRTMVFOA1H4QB8DttjINZAg8q7zlEIxmMmgg8qTyPuRDAWc9CCfVUqHdMQzEIQBEEQBEHQilfwBMbjenxKpUNbCa8huAzB1cpzOIJXcD+Cy1UqHdtg7I/9cSROw0X4Ne7Hk3gVQRAEwV4qHd6JCH6HOWjFFtpvIOYguBjBNPRRqXQOjVgTm+Ej+DzWU+nw+mAmgqsQXKx9umIigqsxF63YRaWyfFhVpUMbieA3WICF6K/tjkfwHGoIfqFS6fxWw6/wInqqdFhrYw5a8GsE52qbrbAALRiD4I/opbJcCX3CUeG7YQ3Lh644FKuqdHijEFyLFszDOpbOCngUwVgsQAs+prLcCeeG1cNq4ZcqlQ5mAyzAAtyM4DRL53QET+JxBKeqLJfCKP8jjLJ86Y2fYCOVDu0SBOMwGz+25LZHMxbiCgSPo4fKcimcH7qGxnCB5UtfnIV+Kh3aQLRgLra2dD6BF3EJWrAQ26gst8LA8OPw4/BelUoHNR4zEQSvYwrG40ZcgjNxNIZiN3wEW2AbPI/gWJXlVvh0eDycFa4PpynPmrgST+IynIXj8W3siR0xCOuhp3dWT/RV6bD64XW04C0EQRAEQRAEQRAELZiMrirLrfD1kHBdSHhUeS5DC4IgCIIgCIJgNp5HgftwC/paNrbGISod1m8Q/BYNWAHr4H34BL6Cg3EczsRY3Ioansc8tOBSleVaODokXBES7lSO/0Qr5uE47IXhOBHn4ArcgUfwIuYiCIKgFferLPe+ieANrKdtNkML5mEdy8a2uAc34ywcj29jT+yIQVgPPVWWmXBqSBgbEq7UfqvhBQTn435s4v+2MjbEBzECzViAjSw7n8dwfAxboh+6qbxj+mMmgq9on2sQnKr+euBJzEEQBEEQBEEwG8+jhlsxHoerlG5eP6e3dvfH5hWNDgmjtN9lCCZiGoLDLLldMQE3IDjbsvFdvI4gCILgTTyDCbgJF+OnOAbfxIHYQaVUjbgbweXa7/1oxWz0VV9nIHgBB2M4TsQ5uAJ34BG8iLkIgiAIXsZuKqVqanJDUcikSS4tJml55C7Ha58vIJiNmxDch0ZL7pcIrkEL5qKf+hqIOQh+j3vwGKZjIYIgCIIgCII52EulNCMQTMPqynErguPVz0fQgoXYxpJZGRvig9gJdyC4x7LTBQdhJ2yJfuimk2lq8kBRSFG4siikKByq7dbEywguRDALG1s678FCLMCtCE5RP10xEcGF/nerYhNsiyHYF9/Bj3E+/oigSaUUm2EOgiHKswOCGeilfCvjGQTHabuV8CqCj6q/BjyFIAiC4E08gwm4CRfjp/g+vokvYG+s5l2gKPyhKKSpyQ1FIbWavbXdbxDcgxkIDtA2lyK4HK2YjdXVx/EInsMq2qYHpiH4tGXj2/gLFmAapuB2XIIzcQIOxVB8CltgHXTVwXXFJATnKd+9CEYo3bk/pOtCNKGr9jkBwc3q7yAEC/EgHsN0LEQQBEEQBEEQvIa11EV6kAaLpCfpTrpbJCtaCkXh9aKQonBnUUitZidt83UEb+BOBDdqu83Qgrm4G8FxSrfDVliAFnxC+xyN4G711wevoAVBEARBEARBEAQtmIX7sa4O6CQEf0Qv5dsZwUvoqTTZlYQ3JtN9M+3XBzMRfFD99MdMBCejn3+0KjbBthiCffEd/Bjn4zrMRXC0ushJpI9Fcjb5KrnUIjnDUigKI4rCaUXhuKYmN9RqNrP0NsKbCC5E8CrW1j7XIbgUwQz0Upr0II8x6V76nqL9euF1BB9RX1cguB/b42pchrEYjYswGmNxA+7HFEzDQgQtOEcdrIlN0NXS2xoL0IKPqZ8mBMOUIn3JdBJymPKcRq/Huehs9dGIuxHcgLfwGvpZcv1wDILp6Kl0OYl8jnySXEK+Sk4mQ8gZ5HDya3IhOZUcucEGT36tqclnm5ps39Rk06LQN9Hw0EM2KgrnF4Vjn37aCpZeI+5CcCtmIviy9tsarXgTDyI4QmlyOgl5gvRUjhORD3/YherniwhmYwC+jCAIgiAIgmAmnsUVGIpgBlZWohGYhyCYi2mYgttxCc7ECTgUQ7EbPoD+mILgVPX1JQTPo5t2yzgSch9pVJpb+5G5pIVspnxHIZiKJgSjLbmNMQ+vYTKCYUqXk8inyXZkNPkq2Yb8gowiV5KQkJCsscaLk4pCikKKQopCikJLrWbvojAi0VirGVCrubAonFwUjqjV7Fer2W3yZNttt50B6OOfHYHgZTyAYKzy3IZgDILp6Kndsj1pJgvJYOXpc9ttJhSF1qYmWylfP7yG4BsW2xD74DD8EKNwDe7G7zEdCxAEd1vsPgTfUZI+mIbgLTQjCIIgCIIgCIJgAf6AHuqrEY8hGKpdsjcJmUU2VrqcS0IuVq7NMRetuBjBi+ht6dyH4BIEz6ObUuUk0sciOZt8lWxD/oNMIe8lnyMHkKPJaYMH/+7kpiY31GruLwpPFYXXikJrUehWFPYoCuMmT7Z7UUhRSFFIUUhRSFHIgAGeRdCMlzEFE7AAwUUIXkRv5fk4ghmYjGCYdslK5GkScoKSFYWRRSFF4Url+w2C36LB0lkFAzDAYrsgmI4eSnA5gvEYiBruwA24EpdiDMbiclyHW3E/HsebaMbtlo19ETyBRm2WA8lb5EB1kQ3IArKQ9FeOrmhCcCXmoxU7WXq7IJiOKQiGKlXWIl0sklFkH7KSRbKRJZRonDDBekVhg6IwcuJEn2xqcmBR+F5ROL0ojC4KNxaFB3v3VsMbCIIgeAHPYHM0YWflG4/gYgTPo5s2y/4kpCDdlGzSJGsXhTlFoWXyZJsrzzcRvIH1lKNAcJB2+gKC2RiAjyIIgiAIgiAIghewFuagFVuqv254AcEUXID/whHYj1V2IduRTUhv/yC7kqEWycFkA3WVi0nIucrxIwTP4fcIztJ2BYLRCJ5Ao9LlsyRkDulnKT38sHUnTbJjURg+caLPWDJdsRa2wK6YjeCDaFQfQxBMxRQE52FnDEZ/9PJvZQ3yUYtkW7IP+axFsgXprURFYVRRSFH4lXL0x0wEX1GePRD8EV21UT+8huCbFlsRH8RO2BvDcRJ+jnG4E49gKubhKYv9HMEllo0zMBNBEASh+59ISEjIQvISmUKOIVeQfuRn6i6bkRbyOOmqfT6ABWjBZQiewcrabg8Ez+E5BLsrVfqS6SRkuDYoCt8rCikKlxWF1GputvRGIrhK/TTgF9gRF+AVBEEQBPOYPoU8Qu4k48jPyUlkT/IQWYucRrYkh1gkw8jmSjRxov5FYWFRWFAUNtA+jbgbweXK1YjHEHxNG/0GwW1o0DY9LbYB5qMZAywbH8Pn8XV8D6djNOteRB4kfyB/ISEhIUeSweRn5GeWiXyWfMki2Z70sPRWxJMIxqAZC7Gt9mnEYwhGI3gIDUqTq0jIHaRBGxSFkUUhtZoxRSFFYZyltzbmoAVbqK8N8SaCe3ELJuFPmIVWFjaTkJCQkJARZBj5GTmNbEluIMeQX5PNlawo/KAo7FEU+k2Zoru2G4FgGlZXvv0QPI5GS+kbCN7AesoxGsEoHUq6kbXJFmQY2YTsS263TGRT8ggZSI4jA8hGZGVL7iwET+BpBD9Sjv0QPIGpCHZSitf3IiF/IRtoo6IwuiikVjOmKKQo/FzbjEIwWv004k4E1/lfbdSDrEsGkU+SPckh5DjyebIn2Z88SLYkh1gkw8jm6qAoDGtqckxR2FfbbIY5CIaoj254DsEXLIWNMBPBnsqzKVowD+vokPIh0pc0kOHkveoum5Lh5JfkOHIUCQmZR6aSR5h1Lcbh5zgJw7E3jkYrFuBqBA+ju3J0w3MILkbwgPZbl4apHPYAzftph6Lwm6KQonBZUUhROFHbbIAFWID+6uMwBK9gTUst7yO7kgZyI9mEfNUi2ZNsrA6KwndqNYdNmGCVpiYHFoXJReG3ReHSonBWreb4++93MPbEjhiE9dADXTEJwXnq6xAEk9FgCTTiLgTXKt9VCEbq0LI9mU0mkwZ1lU3JQeQz5GFyGPkTmU1CQsKsJxAEQRAEc3E6nsA8vFe5DkHwMF5F8FFt14BbEPxaO80c7OI3Pu6uaQc578VvG//0qb6u7S5B8HPlG4g5CL7oXWbSJNsUhauKwk+KQopCikKKQopCbr3VSwiCIAjmohXPoxe6qZ8emIbg05bAEQimYXXlG4RWzMYaOqysQKaSkJ3VTVYnA8gQi+R00sv/lx5kXTKIBz6GPXEIjsNZuBQvIjgdPfEp5euBaQjGILhF230bwatYSzuFp0PCjSFhL203EC2Yh3WUpysmILjQu0xTk12amuze1OSaiROtXqv5QK3mM7WavYvC8KJw4rhxTsEVuBOP4EXMQzAH1+JUTEMf9XMUgrv9HzbDHARD1M/NCE7UoWUECXlQXaSB3EweJ5tru/ejFbPRV/0cidcxDHMwB3/GZPwWl+IsHI9DsCd2xCCshx4Wew9mIfiSEoQ3QsJdIeHT2udqBKcqz3EI/ozVvMs88ICeReG9RWFFS29rtGAu7kRwgvI1YCB64Q0E3/Av9ESB4Jfqa1sEf8GqOqysRF4lITsoXQ4iIa+RftrnFgQnqJ8V0QvboBkzEQRBEARBEARBMBvNCOajl3YKXUNrWBgmh4QPaJ/3oxWz0Vf7bYX5aMEnLJ+uQTAGwQz0Uq5vYwEOxSsIRvgXjkczXkEvrKO+7kFwtA4tx5Ew9yalSn8yk4R8Rftth2AGeqmfHngMwRlYB1vgI9gN38QJOBOX4EaMxxS8iSCYjeAo7RTWDgkvh+dDwoba7xYEJ1hsD3wHQzEE22IAVvXvrYBHEZxh+fV+tGI2HkRwpPJsjFkIRiN4HQP9C2ehFU/hXCzEYPXzGQQvoacOK705+Lc0voIPKkUayd0k5DLluRfBkernZwgeR09L73YEYxG8hJ7aKawf9glfCbuF7tpvOwQz0As3IQiCIAgWYDoewz24Bp+y2EgET6Cn5dutCMYgeAk9tV9XTEBwHeYg2NW/sTJeRXApguuUrwGfRwOmIDhPx3YKgmuU4lvDaP0LmUr6KM9OCF5CT+X7KFqwENtomx0QzEANwSHaITSGi8KHwuHhS8pzL4LxOAvj8Gv8DhPxDN5EEARBsD+2RzMW4kMqOyCYgckIDtZ+xyJ4EZMRnG8JHIfgLryFVmypXIcgGIOn0YKzdWxrYQ5asaX22RLz2HAqj35K+ZoQHKxcq+BPCH6gfe5FcDGCF9BdG4UBYYT/EUYpz0FoRRAEQRC8jqfwIG7D9bgCY/EDvIDgRJW/uhfBxQheQHdt937MRyvGIHgOq1gCq+IvCMYhGKs8G2MWgtEIXsOmOr5zEFyi7bqiCcEo9bE7ghfQXXkuQlBDN+2zM4KXuvH77zH+WfbSRmGt8ENvCz3DWco1DLfjOtyLx/EymhEEQRAEQTAVf0I3lb/aGcF0TEGwr7ZZAY8guBwL0IKPWwqnILgF89GMTbRfI+5DcD3mIPiid4f1MR/N+D4+is2xFrpYMj9E8Ef0Uh8N+D2CfZVjNwRzsYUS9GTCKdzzKheEhCdDozYK3w0/CGeFzSw7q2NTfBi7YX+MwCm4EcEb6KXy95oQjEbwJBotvVMRPIspCEZaSmthDlpxLYLztN/3EbyIGoILvLuMwywEQRAEr+MpPIAb8SuMxHdxIP4LC9CCj6mvoQieRCMasJK26YvpCA5Vkma+GBKeC8+EhD10PvciOFLl730JwfN4BsGXLJ0PoxkLcRmCx9FTG5yD4Ho0YwE20HaDMB+tGIPgOazi3WU1XI/bcR8ex8toQRAEQRAEQTALp6q/LngawZewHoK5eBEP4w5cjnNwIoZjL3wGW6PBYlciuBeNShIawmMhYXRIeDg06Fx2QvASeqr8VSMeQzAawXhLbiX8AcGv0IKF2EYbrY/5aMZNCH6qbVbAIwiuwAK04BM6l9WxKT6M3bAfRuAUXIhHcT5WsWwMQ/Aw3oe3EARBEARBEATz0YCvIXgTGypZGBoSngpTQ8IuOp8mBIeo/L19ETyJY9HXkjsUwcN4FsHx2ukiBFehFW9hDUvvZATPYgqCn6rUWw/MQCvm41k8gNtxI67F1bgaV+Jq3IS7cTvWxQwE+6uD0CU8ExJGh4Q7dT5fRNj1dtJN5a+64U8ICpyEQ/E17IxtsBFW9s8acAiuRVBDN+00AM2Yh9sR/NDS2Q7NaMEVCJ5AT5Vl4WgsRBAEQRAEQRAEwUIsRHCDOgrfCgn3h5+EfjqfRv74axKyn8rfOxdBEARBEATBPEzFI7gT4zARwVxspiTjEFyO4HE0WDIr4g8IRqMZCzFYZVnqihXxHnwEu2EoDsUJOA83YjymYBqaEbyKzdVR6BG+F9YPx4YfhD10OhlKQp4kjSp/72s4FsfhTIzFLSjwJ8xGEARBELTiHCUahFa8hX3Rw5LbBQvxKJ5BcLzKu0E3bIaulpHw3TDQ28LJYW2dSrqQp0nIHipLqwfWxSB8EnvipxiKBiW7DcEzuBbn4cc4HEMxBNtiAFb1j7bBNQhq6KZS+V+EUaHB28J+4UM6nXyLhDxMGlQ6rLswC0EQBEEQBEGwANPxGJ5GMBebq1T+hfCt8PHQEM4Nq+l00oNMJSGfVumQDkDwJr6ML+IgHIMzcAluwgQ8izcRBEEQ/Eql8m+ELuHr4dgwWKeVvch3SBeyAlmTNJDeKu+49fAGgr0tue7ohy3xZeyoUqn8ndxOPk82JsPJSDKL/J7cRa66zX+eGH4YDg1fCzuHlbwt9FIpXSPuRHCdSqVSoowk55BBZDj5EQkJCckL1p8YEhISEgaF88PwcH7ooVKawxC8gjVVKpUSZSTpT0aT4eQo8ltyHRlHxjzqvb8Ml4Yrww3hjnB4eJ+3hSHhcyolKAx0hbus4i/4rEqlUrKMtEiOIcPJlSQkJCTzdX8uJCQkzA7fCZt6W9gx7KHSTnfpqmaSmrjHz1UqlRJlEKmRbS2SLmQFsiX5HDmAHEVOe8uKvwg3hPvDU+GR0D+MCjuGX4VVVdqp5ng1UfOcCVZRqVRKkhXIIyTkTG0Ueoftwkoq7dRkKzUL1LQofEKlUilRTiEhz5CVVd5hT1tBzaNqouanKpVKaV625oe39eDjpJlsq/IOKHQz2dFqjlezk5pb1UTNEx7QU6VSKUVYKTwd5p/qyBEq75DJhppsZ/9tglUUTjfZgR6yjUqlUpowKiQ8HLqrvEMmO0mhn78qnK5SqZQq7BBaw7zwXpV3UM0X1eztvxVWVDhdpVIpTVgzdA8nhSNU3mHRoGZ/NSeo+aSHfE6lUmm3sHK4MHwzXBR6hyFhC5VKpdLZhL3Cx70tDA5fV6lUKp1V2Cd8xNvCVuFbKpVKpbMKfcJFYUg4P6ytUqlUOrOwUnh/WFmlQ/h//mQxiO2OrREAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTg6MTY6MDcrMDA6MDDqAYlXAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE4OjE2OjA3KzAwOjAwm1wx6wAABPB6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAASIl9V8tyIzcMvPsr+AOaIl4kePDBa2+cVLJ2VdbZf0hVjvn/Sjel5WgTVkYSrBn1YJpAA6AfCo/fX3798++yDn15eCil/s97jFG+Wa314Uvhl/Lp8+svb+X54+nT9yvP73+8fXwt0UoT3IPXj9inj/cv369IeS5xmKWaFDtyiGcv9ajzOO/U8lbakWa9deB6j3Td4Az++tFSWjY4rmIyZIPzifMUSyt6uGp6bnABXB6jtyEJnNWudffcBtw4mnqY4+cRrnXnrwMncojW2nEZK8potgFm+UoglsuVXOoR4m67Rw+6tEObqQqRDenpuyBKvUKH1LReLnKMxIp28REmRuLw2qxruehRR3ZpO6gS2g7FmoeSQDaxtiVgV6+tNqwLAB/SdItkgsQPweEMVEPk+275EpBGQhGt4Suermni2zW1mXRNqX0QKa372C6JaWoIpDmSg3Rl+NilE6KgfsX60ATQKuj6Dsgs+aEDVwd/R1hH7IReJ3BA6BpMkeZQAv6LlEnSzaRVIr16+tYnq6cfNSGLxlz26GnjDlmef359lPLt6bdHX3dZeUdgozeDGnBXdsMDdv4dSAjANAOygsBGSOa//V+uD5B1W0DjIDPcO0tA+G270gb/StmKMMpMW98utE9g65lIB0LC0OzDnAgJgjtyGInqiJpbIBMHoQYenhTNQK9ouyjg/Q6XqJOGHoB4wafGTjXGzIFddbjts2IU6h07qF6hbagYgxSo877TrLG2EHtJVAJdNbQg3dWBsbYuflSLyLmmGIHc7aBxdWrZB9sAOoYn+swO2q5MIVdnc1FqfLSt147gX+IICAsqAwHvQO7aoLHALg3agPq4KvyhHDdIJurSKQ6d4hiZI3a9BRrD46Fs9Mvhs2VgUWO3KJer0+yOkpmJwEjZTijXK1PUdXUjtEuv247tM1WCH6R3nLMVmXbfuvUbtjWMlkbNIq176EzWOFIQgsapFj22/c3bzam3qCCOwSs1xq72vE8oEt8qQ4Di1qa29TpzJWgUNVGgLMTEsaU6blDUZ6awc1rkNgVRJ9TwQ+a1EQ60451Y4lpXfmBRNikqJkHu6iqudYWtB1QQs9FWnY10g7Wb214xDgaljRKU2LWL8BtbrWhXsw1gxuW2gUfcgmANfc1nsw+2hB0WGftrEg40lRgsSkxZLHQD/vz28sMm67rt+vT+9nJuu/jSc3eFk2LnJoqnaxA4Tr3EuSUSbHfA/afXx3VLmxf7uc0RfPLczAg+49yxOD5yvy9xGlmjQfhEGFkUsctwGlmPxGbCaWQRFZ8sZFEVcqVpd3sAp5FFFQ3YaWSxRZ93GlmEhYxh9H5MO42e02xGFO8zqooo0izKOiOLK+eQJWV6XpwxFXWaxZm1PK8szsr48srizN0HjS7OGFxKY/cDSuaVxdkYZm68F2djmGHsFAPDDGOLM+aH09jijDHBU8yAu2kgE7M4GznD2OJs5AxjizOKS2j8vlcLjS/OzjjD+OLsesMszs44w/ipYXKmWZydnGkWZ6c2aBZnpzZoFmenNmgWZydnmLjvWE4Ti3PMAhJ0nbv+4zSxOAfjDBOLc5AzTJylRz0TszjH1LOftRWkTC2eEFJGPs60x6Ssd8lppIxFnAFrk3LcLYtd5b6H8Pz7v334/vAPrYemVCm6SMAAAAAddEVYdHJka2l0UEtMIHJka2l0IDIwMjMuMDkuMwDvvq3eAH9imgAAAnh6VFh0U01JTEVTIHJka2l0IDIwMjMuMDkuMwAAOI0lUz2v2zAM/CsdE9QW+C2yRoEC7tApb3hjkClr9y7vx/coB3Asn0jqeEedj9t5P8/n+evP63Z+vvndP74/1ur2efv5ce/ncfb/Wxp86Hki7W0r1va1uJ1/7/hALcVb8PDz8f3VWc+P/fXt6+ZDNUU3HVlstR0xUnVOAHN62nbMEclRmw9i5WrAkjU3GSaSvh05akYJAKUp21EjxFw3GuUmlNvBPFiIgaSmhy5kBo7ZaTibKdJYhwQWgEKJsNlQMQrsPCpRHIgPo7Btl0GVfRrHEDfttAzWuIKCsKBhxSGN2GD8gAQodlqivwjuNEll425Mcp1Gg2NaRasRqhYb+KejVR+ssxTfSsxQx4YUrc4osGM4Swbe1qdzLxpAEyxI6qrZQMxM7baUweFgVMkypEg5taag7khaZAo6o2VEoWWIh94RJqCHAmTmS7MUtFMLgxnc8iNGZ4cp6M8lSMAQwYm7DVL3WgaUq4DW7sOVeVWzWQGGxx7oImdTy6nYBTS7D+lqlVmOlvfEWcKrmlgqhgE8oAlfFrPKbGkai/DWT8ADfe41kifswzT54ooQC++BZPLVD8yHnUBKMFiNyMhWCTomGFwIB1X7on4hOogy25hKzEf3gilwslZGYPgVhgvgsqwggRlX1CR4DpmhHvsV5S04hMSI+VVeqLiDMGN5UdBo8bjn0XwJBeV8jW/g8tSSE1NC1tDkSbrM0Zw115BDuyUdbqPYNeWh2MOcFchc1bPljYGewBeAkV0XlZJmdtL02QhcmaGLJMyz7CyB1auRKodh9+3f7x+4U1//AcNk6okoUvt4AAAAAElFTkSuQmCC) |
관련 화합물
힐 시스템의 공식은 C42H45ClN6O5S2
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |