몰 질량 of C16H11N3O (CGS-8216) is 261.2780 g/mol
C16H11N3O 중량과 몰 사이의 변환
다음 물질의 원소 조성 C16H11N3O
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 16 | 73.5505 | 수소 | H | 1.00794 | 11 | 4.2435 | 질소 | N | 14.0067 | 3 | 16.0825 | 산소 | O | 15.9994 | 1 | 6.1235 |
몰질량을 단계별로 계산하기 |
---|
먼저 C16H11N3O에 있는 각 원자의 수를 계산합니다.
C: 16, H: 11, N: 3, O: 1
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C16H11N3O) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
16 * 12.0107 + 11 * 1.00794 + 3 * 14.0067 + 1 * 15.9994 =
261.2780 g/mol
|
화학 구조 |
---|
![C16H11N3O - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT4AAACaCAYAAAAwwiR8AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEg0VUBn+UwAAAAZiS0dEAP8A/wD/oL2nkwAAHwlJREFUGBnswQmAFnSBN+DnnQHkGFC8EFMTtAzR1Zo0KyrXZi0rOpdNs2gzo3ObKGu6Vsn8jC6LMhKrLdmOjewgylopLcNqlbIswkzwRsUD5ZBrZn7ft+yOH6/vKAyizrzv/3kURVE8BsbhU1iJTViC0YqiKOrIEDwf5+CvCIIgCO7ECEVRFAPYXpiKebgXQRDcje/iK3gbNiO4ArsriqIYIJrQig4sQjeCIFiGWWjDYNUOxjIEv8deiqIo+qkRmIw5WIEgCO7HQrTjANt2AK5F8BfsqyiKop8Yj3YsxEYEQbAcczAFLfpuDP6IYDnGKYqieBwMQxtm4QYEQdCJRehAq51jNH6L4EY8SVEUxWPgQEzDPKxBEAR3Yh6mYjd904Sn4wx820PbFYsQ3IbDFUVR7GTNaMUMLEYQBMESzMQkNOmbEZiMObgFQRAc5KENx8UI7sbR6swonIs/4Yt4sqIoHm17YgrmYhWCIFiLBZiGffXdBJyGS7AJQRDcgNl4MYZ6eLvg+whW4ZnqxHDchiAIghWYh2mYiIqiKB6piejAInQhCIJlmIU2DNE3Q9GGmViKIAg6sRgz0IqKvhmC7yBYizYDXDO+i6Abl+M63IMgCIJb8S28FRNRURTFtuyNT2ExbkcQBPfjIrwNB+q7MZiKeViNIAjuwjxMxWiPXDP+DcEGvNQAVcH5CFbjJNXGYxrm4mYEQRDch4XowCQMVhTF1kbiJgRBcDvmYgpG6ptmtGIGFqMbQRAswUy0YZCdr4JZCDbiVQagTyNYh+fatvGYijm4HkEQBGuwEDPQhiGKorG9HUEXfoxn6bs9MAVzcDuCIFiHhWjHfh4bFXwKQSdebwD5GIKNeKEdsy+mYA6WIAiCYC0WYSbaMFRRNJZ5CK7WNxPRgYXYhCAIlmEOJmMXj58OBN14hwHgDASbMNnOMxZTMAuL0Y0gCDZjMWZiMnZVFPXtYgRTPbzhaMMs3IQgCDZjETpwqP7lfQi6MV0/1o6gEyeqVcH+do69MRkzsRhdCIJgMxZjFqZgtKKoH4OwGsFYtcZjGhZgA4IguANzMQWj9G9vQReCmfqhU9CNbrxR7z6Ne3C0nW8k2jATi7ARQRB0YgnmYAr2VBQD1zMQXKN31yEIurAYM9CKioHlZGxGMFM/8jp0oRtv1buPI1iP53v0jUAbZmAhNiAIgmAZ5mAqDlYUA8d7EczRu4/im3gN9jDw/RM2IZiNJo+zV2Azgvfp3ekINmGyx8dwPB8fwS+wHkEQBBvxFVQURf+2AMHJGseLsR7Bv2OQx8nx2IDgX/WuHUEnTtR/DEIrOvBjdCMIPqAo+q8mrEJwgMZyLNYg+BYGe4wdh/UIPqN3p6Ab3ThV/zYUf0bwR0XRfz0VwXKNaRLuQ7AAQz1GjsEaBOfq3evQhW681cBwMoJbFEX/1Y7gqxpXK+5EcAlaPMqOxD0IvoYmtV6BzQjeZ+Bowh0InqIo+qfvIjhFYzsUtyK4DKM8Sg7DXQguxCC1jscGBKcbeOYieI9iB+Wd5M16lSHko+Qlih1RwR0IDlIcgpsRXIk97GQHYwWCn2CIWsdhPYLP6N8ORjvGqvZqBJcodlCWkiv1Ki0kZLZiR0xEsELR44m4DsFV2MtOsj+uR7AQQ9U6BmsQnKv/+yGCN6q2KzZhE3ZT7IAsJVfqVVpIyGzFjngrgm8qtjYWf0awFE/wCI3BNQguR4taR+IeBBegSf/3ZgTfU+syBP+o2AFZSq7Uq7SQkNmKHfEtBG9RPNje+AOC63GQHbQXliC4CrupdRjuQvBdDDIw7IdurMEuqnUg+DfFDshScqVepYWEzFbsiFsRTFD0Zjf8BsEaHK+PdsViBFdjD7UOxgoEP8EuBpY/ImhT7TAEd6BJ0UdZSq4np5JTyankVHIqeTsJma3oq4MRrERF8VBG4XoEnXiS7TQCv0JwLfZRa39cj2Ahhhp4zkZwjlrXI3i6oo+ylHSTDWQD2UA2kA1kAwmZreirNyK4ULEte2IDgo/ZDsNwKYIb8US1xuAaBL9Gi4FpEoK/qjUbwRmKPspScqVepYWEzFb01QUI3qnYHusRvNM2DMGPENyC8WrthSUIrsJoA1cz7kLwJNVeguC/FH2UpeRKvUoLCZmt6KvrERyh6PERfAGHqDYa3ejEbh5GM+YhWIlD1doVixFcjT0MfN9E0K7aMKxDF8Yo+iBLyZV6lRYSMlvRF/sjuBfNih7LERyp2ksR/NLDaMI3EKzC09QagV8huBb7qA8nI7hYrYsQvF7RB1lKrtSrtJCQ2Yq+eB2CHyp67IfgXjSr9ikEZ3oIFZyH4D4cpdYwXIrgRjxR/dgdndiIkaq9HcE8RR9kKblSr9JCQmYr+uJLCE5T9HgtggVqXYGgzUP4JIJ1eJ5aQ/AjBLdgvPrzawQvU20cgvswWLGd8m7ydr3KEDKTvEzRF39FcLSix/kI3qtaCzZjM1r04mwEG3GCWs2Yh2AlDlWfPoTgfLX+guBYxXbKEaSN7KlGRpA2coBie+2DYA0GK3pcg+Bo1V6I4Dd6cSaCTXipWk34OoJVeJr6dSSCFaio9kkEn1Bsp8wnId9TIxNIyHTF9no1gp8qeuyDbqzBYNXORjDTg3wHQSdOUquC8xDch6PUtwpuRnCkasciWKLYTplPukjIZFUygYRMV2yvLyD4oKLHPyH4T7UWIXiRrRyPIDhP7z6JYB2epzGcj+BDqg3CKgQHKbZD5pPl5FJyI2nxgEwgIdMV2+tPCCYpepyL4EOqDcMGdGI3WzkHwWq9OxvBRpygcbwcweVqzUPwdsV2yHyynBxNusgnPCATSMh0xfbYHV1Yj6GKHlcjeI5qxyH4nQc5CkE3hqlWwfnYhJdqLCOwAZ3YU7V/RvBjxXbIfLLcFvkq2UQOt0UmkJDpiu3xcgSXKHrsji6sx1DVZiA4Ry+uRdCmVgVP05guRnCyanujC/djuGIbMp8st0X2JveQ35ImMoGETFdsj3MQzFD0eDmCS9W6BMHL9eJsBJ9RbK0dwTfVugLBixXbkPlkuQfkbSTkDWQCCZmu2B6/Q3Ccosc5CD6i2hCsQzf21ItnI7hOsbXxCO7BINXOQDBbsQ2ZT5Z7QJrJYnIbOZqETFdsyyh0YhOGK3osRvB81SYh+JOH0Iy7EDxJsbVrETxbtaMQ3KTYhswny1XJ00knuZCETLdFjlA8lBchuFzRYxQ6sQkjVPsggi94GN9E0K7Y2mcQnK1aE25DcJjiYWQ+Wa5Gvki6Sch00ko6yc/JIYoHm4ngbEWPFyG4XK2fIni1h3EygosVW2tD8Ee1vorgfYoHycvJF0mFzCfL1chocgcJmU5eSVaRkHXkA2SwosdvELxQ0WMmgo+pNgirEezrYeyOTmzESEWPIViN4Imq/SOCXyq2kveSLhIymZxDfqhXeQ1ZTF5ji4whc0k3CbmWtCmGYyM6MUrR49cITlDtaAR/tR0uR/Byxda+j+DNqo3CRnRidw0vg8gXSEg3mWGH5XnkLySkm8wle2lcbQiuVPQYjo3oxK6qnYbgS7bDhxCcr9jaqQjmq3UJgldraBlNfk5C1pOTPGIZTDrIehJyD2knTRrPmQg+pejRhuBKtX6I4HW2w5EIVqCi6DEW3ViLoaqdhuACDSsHkb+QkBXkKDtVDiI/JSEhvyKHaSy/QPBSRY8zEXxatSbcjeCJtkMFNyM4UrG13yN4gWoTEKxEk4aTZ5GVJORqcoBHTSaTm0nIZjKLtKhvE/F+bEY39lT0+AWCl6l2JILr9cH5CD6k2NpHEXxOresQPENDyYlkPQn5CRnlUZddySzSSUJuIa9SP4ahDTNxDYJgA4IL0KzYBevRjT1UeyeCC/TByxD8WrG1ZyJYrtbnEZypIaRCZpCQkFmk2WMqzyBXkZCQC7l7PwPTgXgbfoz7EQTBHfgqTsd9COZjF43tOQj+qNaFCN6oD0ZgA7qwt6JHE+5AcIhqJyBYrO5lKPkGCdlM3u5xk0GkndxHNnDkEnRgkP6tGa2YgcXoRhAESzATk9Dk/3s67kJwEYZpXB9G8HnVKrgDwcH66GIEJyu29u8I3q3aUKxDN/ZVtzKWXEFCVpMX6ReyH1/4LILg9zha/7InpmAu7kEQBGuxANPwBA/vSKxE8AuM1JguRjBFtQkIVtgB7Qi+qdjaiQh+rtYCBKeoSzmc3EBClpFD9T8vxvUIujEXe3j8TEQHFmIzgiBYhjmYjCH65im4BcEV2F1jGYTVCMaq9hYE37IDxiO4B4MUPUbjMzhOrbcg+K66kxeQ+0jIr8ne+q9hmIGNCG7HVFQ8+oZjMubgFgRBsB4L0YGneOQOxDIEv8OeGsczECxV65sI3moH/RXBJMX2OADBBnwML8BIA16mkc0k5D/IMAPDk/EzBMEvMMHONx7TsAAbEATB7ZiLKRipb5rxLHzAQzsA1yL4C/bVGN6HYI5aNyE41A46B8HZiu3xOQTrEQSdWII5mII9DBhpJp8nId1kBqkYWCqYipUINmEmhtpxQ9GGmfgLgiDoxGLMQCsq+mZ3TMEc3IYgONRDG4OrESzHOPXvRwhOVu0gBHeiYge1IfijYlvORrARZ+Dj+A02IwiCLvwBs/Aq7K1fykjyIxKygZxsYBuNWehC8De8wPYbg6mYh/sQBMFdmIepGK3vjsAHsAidCILgb/gsxnt4o/FfCG7EwepXE1YhOEC1UxB81yMwBKsRPFHxUD6MYBMmqzYck9CBhViPIAiCZZiLaTjQ4y7jyBIScid5jvrxHPwZQbAAT1CrGa2YgcXoRhAESzATbRikb4ahDbNwE4Ig2IxF6ECrvtkVlyO4DYerT09FsEytryFo9wh9D8GbFb15J4JOnGTbhuK5OB0/w1oEQRBcR/OXyevJOI+pHENuJyF/IgeqP4PRjjUIVqEde2MK5uA2BEGwDgvRjv303ThMwwKsRxAEKzEXU7CrR2YELkZwN45Sf96F4KtqLUfwVI/QGxH8UPFgb0A3uvEmO2YQWtGOebgHYeSfSUjICjKPtJNWUtEnGUsWkh+SkWrkXWQh2Y2sIiEXkVHq23hchCDoQhAEf8U5aMMQfdOMSZiJxQiCoAuLMROTULFz7YIfIFiFZ6ov30PwBtX2Q3Avmj1CY9GN+zFM0eO16ELwbjtPM1o55U3kB+QuEhISEnIbmUfeQQ4nTR5WxpOQkE+rkfNISIX8E/kcadY4TkEX1mIROnCovtsLUzAX9yIIgjVYgGkY69E3BN9BsBbPVz9ei29inGqvRbDATvJ7BC9Q/LeXYzOCDo+6jCfTyFxyIwkJCQlZTRaSDjKJDFEl40nI9WQzOVKVnEdCKhrTqxD8XN80oRUdWIRuBEGwDLPQhsEee834KoJ1eKH6dj6C99pJPorgc4rjsQHBDI+LHELeRP6d3ERCQkJC7iM/Ju8nf0fGk5D3k5vJb0mTB+Q8ElLRmGYhON22jcBkzMEKBEFwPxaiHQfoHyr4HIKNeKX6dQ2CZ9hJjkGwXGN7NtYi+Kx+I/uSKWQOWUK6SUjITDKehLSTk0jIWz0g55GQisZ0FYLn6d14tGMhNiIIguWYgylo0T9V8GkEnXi9+nMogvsx2E7ShDsQPEVjOgarEXwFFf1W9iUnkS+S55DxJKSdVMgvySqyjy1yHgmpaDy7ohMbMEytixEEwSZcgtMwwcDSgaALp6ovcxHcZSebi+A9Gs8RuBvBXDQZUDKehLTbIoeRTeQbtsh5JKSi8UxGcJnefQJ3Yh6mYjcD2/sQdGO6gasZrZiBVQiCH9rJTkTwc43lENyO4LsYZMDJeBLS7gH5FAl5LjmPhFQ0nk8iOEvvhqOivrwFXQjOMHCMwRvwHdyLIAi6cQWG28lGYzM2YVeN4WDciuCn2MWAlPEkpN0DMpLcTK4k55OQisbzXwiO11hei80IZuq/JqIDi9CFIAiWYRZehuEeRZcheJX6tz+uR/AzDDVgZTwJaVclU0jIbSSkorG0YBM2Y6TG82psQvAFVDz+RmAy5uAWBEGwHgvRgUM8hjoQ/JvejceLMMrAtjeWIvg1WgxoGU9C2tXIRSQkpKKxvADBbzWul2A9gvPR5LE3Hu1YiI0IguAGzMEUjPQ4ORzBbaio9WEEnViCOZiCPQ0ce+LPCK7CaANexpOQdjVyMFlPQioay/9B8AmN7e+xBsG3MMijayjaMBNLEQRBJxZjBlpR0U/cgKBVrTfgcmxCEARduBqfxxTso3/aFYsRXI091IUMI21kf73K00ibxvMrBC9RPAf3Ifghhtq5xmAq5mE1giC4E/MwFaP1U19EcLqHNhyT0IGFuB9BEATLMBfTMM7jbzguQ3AtxmoIGUz+kZyksQzFenRhN8V/a8VdCC7CMDuuGa2YgcXoRhAESzATbRhkAHgJgr/ZfoPQig4swCoEQRCswDxMw0RUPHaG4RIEN+GJGkaeT0JuJM0ax7EIfq/Y2kSsQPBLjLT99sAUzMU9CIJgHRZgGvYzAI1GEBxuxzSjFe2Yh7sRBEFwG+ahHa2oeHQMwY8Q3IKDNJRUyF9JyGSN4wwEn1U82CG4GcGV2N1Dm4gOLMRmBEGwDHMwGbuoAysRdOM6dGAShtgxTZiIaZiHlQiCIFiJBehAK5o8cs34NoKVOFRDyntIyEUax88RvFLRmwNxHYLfYy//YzjaMAs3IwiCzViEDkxQh47GGgRBEKzGT/BBPBtD7LjxmIa5uAFBEASrsRAdmIQh+qaCLyO4F0/TsDKarCPd5GD1bzDWoRt7Kx7K/vgrghvxC2xEEAQ34Ty8FCM0iKNwCmZhMboRBMH9WISZmIxRdtyT8EZcgBsQBEGwGj/FB3GMh1fBFxGsxSQNLxeQkJnq37MQLFFsyxgsx60IOrEYM9CKisIYTMZMLEYXgiDYjMWYhSkYbceNxRTMwmJ0Iwh+4eF9AsH9OFbx/+QYEnInGaq+fQDBbMX2+B6CL2N3xTaNQhtmYhE2IQiCTizBHEzBHnbcWLwaX8BbPbSzEGzEixRbye9IyGvUt58gOFHR4wRMxRi1bkUwQbFDWtCGGViIDQiCIFiGOZiK/e1c0xF0YoriQTKNhFymfjXjXgT7Knr8GMFJqj0JwUpUFDvFcExCBxZiPYIgCJZhLqbhQDvuHQi68BpFL9JC7iUhh6tPT0fwN0WPZqxCsL9qpyL4juJRMwit6MAC3IsgCIIVmIdpmGj7vB5d6MY0xcPIuSTkXPXp3Qi+rOjRiuA6tS5A8C+Kx0wzWtGOebgbQRAEKzAP7WhFRbU3oRPBexTbkAmkm6wmI9WfHyCYqugxHcFX1LoBwRGKx00znoZ34Qe4C0EQBLdjPubhWwiCDyi2Uy4jIdPUlwruQnCgosf3EfyzavsjuAdNin5lPKZhLm5EEARBcJmiD3ISCfmD+vJ3CG5S9KjgTgTjVHsdgvmKfu8QfBzLcTu+reijDCG3k5Bj1I93IJir6HE4gpvV+hKC0xRFY8jHSMgF6sc8BG9S9Hg7gq+rdS2CoxRFY8g4/nQdx/4Me6gPKxA8WdHj2wimqbYPgjUYpCgayEUI3mPgewqC2xRbuxXBU1R7NYKfKooGMxnBdWgysE1D8G1FjycjuAMV1b6A4IOKosE04XoE/2Bg+zqCtyt6vAnBPLX+hODZiqIBfQjB9wxsNyI4TNFjLoJ3qLY7unA/dlEUDWgfbMRm7GdgGofgbjQpetyA4O9UewWCSxRFA/s2ghkGpn9G8H3F/5p3AE+4gqYb0aTKhacz+VIOO01RNLBjEazAYAPPvyGYrvhfmUpCfqBGfkdCjlMUDe7PCF5p4LkOQavif+XLJOTdqmRX0kk2kuGKosG9E8HFBpaxCO5Ds+J/5W8k5Omq5MUkZJGiKOyKtejGkw0cr0HwY70bh4qGkrEkZDUZpEo+TkLOVhTFFl9G8CkDx3kIOtQ6HHfh6xikYeREEnKRGvkNCXmhoii2aEVwD4brPwZjH0zEc/EKnIr3YyWCZ6r191iL4D8wWEPIbBLyflUynGwkm8koRVFs8W4EwVSPjmHYFxMxCZMxFe2YiblYgEVYghXoQhAEQRB04n58Qu+Owt0IfoRh6l6WkJBnqZJ/ICFXKIpii/2xBkHwG9u2B56MZ+LFmIrpOAtfxIW4FFfjFqxHEARBEARBEARBsAm3YQkuw/fxZczE19GJ4BOoqPVU3IngUrSoW9mTdJN1ZIgq+SgJ+ZSiKLb4PoLv4m4Ev8UCfB3zsQhLsRJdCIIgCIIgCIIgCNbhJlyFhfgWzsVH0I7X4gQcjfEYZdsmYwOC89Ck1gTciuBXGKUu5ZUk5Gdq5Jck5KWKonACgtV4AhYhCIIgCIIgWI8VWIJFmIdZmIF2TMVkTMJE7ObRcwLuR/ANDFJrHJYjWIw91Z18loScrkp2IetJF9lDUTS44ViOoN3/GIbz8BtcieBOtGEC9kaz/ue5WI3g2xis1gG4FsES7Kuu5CoScqwqeR4J+YOiKHwcwR8xSLV9sArByw0MR+FuBD/CMLX2wdUIrsF+6kJ2JZ1kIxmuSv6VhHxOUTS4idiELhyj1n8guMjA8lSsRHApRqq1O65AcAMONuDlJSTkMjWykIS8SlE0sAouRfB5tY5HsA7jDDwTcCuCX2GUWrvh1whuw2EGtHyChJylSgaTtaSb7K0oGtipCG7DbqrtgmsQvNfANQ7LESzGnmqNwEIEd+AIA1a+QjaTF6iSZ5KQvyiKBrYH7kRwolofRfAnDDawHYBrESzBvmrtgvkIVuEYA1ZayBBV0kFCvqgoGtjXEFys1pOxAd14tvqwD65GcA32V2sILkSwFsepGzmCnEGOUxQN6jnoxgYcotbPEZyvvuyOKxDcgIPVasbXEKzD8QaUNJHx5Il6ldFkPGlWFA1kCJYgOF2tqQjuwp7qz274NYLbcJhaFXwewUa80oCRFhIS8nw1ciYJGaMoGsiHEFyLoaqNxh0IXq9+jcBCBHfgCLUqOAdBJ6YaENJCQkKuIbuokjNJyBhF0QhOYxzWohvHqTUHwS9RUd92wXwEq3CM3s1A0IlT9HtpISELSBf5V1VyJgkZoygaQbjoP7n6AGapdTS6sBETNIYhuBDBWhyndx0IuvEu/VpaSMhZ5GtkPTnYA3ImCRmjKOpd+KeQcG8Yq9ogXIXgoxpLM76GYB2O17u3oQvB6fqttJCQs8hYsppc7AE5k4SMURT1LIwMt4SEN6v1XgQ3YITGU8HnEWzEK/XuTehCMFO/lBYScpYtchoJOdEWOZOEjFEU9SzMCgn/FZpsJRzwJS4bxK14ocZVwTkIOjFV707EJgTnoqJfyH5kH9JCQs6yRQaRP5EVZCQ5k4SMURT1KrSGzrA5HOlBwg9C1vINxX+bgaATp+jdS7AewRw0ecylibSSGWQx6SZnkhYScpYHZBLpJh8jZ5KQMYqiHoWm8NuQ8EkPEk4ICfeFJyh6dCDoxrv07oW4H8E3MMijLnuQ15BvkLtISEjIGvJx0kJCzlIlF5CN5BskZIyiqEfhX0LCTaHFVsLwsDwk/Iviwd6GLgSn692xWIPgOxhkp8t40k4Wkk0kJCRkGZlDJpNdbJEWEnKWKtmb3EM6ScgYRVFvwj5hVUh4mQcJnwwJi0OzojdvQheCmXr3dNyFr6DiEcsw0kZmkZtISEjIZrKIdJBWvUoLCTlLjbyNhISMURT1Jnw7JFzkQcJhYVPoCs9QPJwTsQnBuaioNR5NdtizDiLvJP9JNpCQkJBbyZfIK0iLbcoIcg/5sBppJpeRe8heiqKehONDwrowzlZCU7j8/7YHNyF/EHQAxz97fQKHGC56o+iNHfQQsYhJMjKFJmyHMKJDNFAIBLF2sB2qUwTzIJJ52UkZ7Cijg9IWisVOMZARCYN28GCN3BbrsC3as6/HHh57Ym8J/4ff5xPFC8aN2IcrCIex0e3ZhAdxCKfYdI3lCxQt0yk6RA/SBmOM/y2W4kwUz1glfhjF3+Ie40btwWWEo9js5nwST+AV/BMhhAu8+Rx9n7YbY9yc+EUUf4otVojt8V4U3zVu1m5cQvgNlqxtI3biIE7iOkIIZ/ErPIItxhi3JnbE1ViOr1sljkRx3LhVX8V5hDfwUf+xDftwGH9FCOEyfocf4bPGGLcvNsTrURy2SuyO63E1dhi34ys4j3AJz+P3+DdCCGfxa+zBR4wx7qzYH8X52G6F2BpvR/Ez407Yi2WEEK7hJA5ipzHG/1fsitPxA6vEz6M4E0vGnfIwTuAtfAd3G2N8uGJzbLBCfCkux/X4pjHGWO/i1SheNsYYiy4+EQ/Fo/Hl2GiF+FS8ExfiY8YYY1HFF+N4XI+iKN6N/VaIbbHLGGMsqvh0nIuL8WR8Ju6Nb8QfonjaGGOsF3E0rsUuq8RS/DGuxMeNMcaii7viX/Fba4hvR/G0McZYdPFAFM9aQ3wuiiPGGGPRxd4onrKG2BzL8Zoxxlh08a0ofmINsS2KY8YYY9HFfVG8aA1xfxQvGGOMRRcb41z8OTb4L+LHUTxmjDHWg/hpFAesEp+Pv8dfYosxxlgPYkuciOJYPB7fi1/GxfhHfM0YY6wnsTUOxOm4FsW5eCm+YIwx1rtYMsb4gPcBWd2dhidX1LcAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTg6MTM6MjErMDA6MDAt3XBUAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE4OjEzOjIxKzAwOjAwXIDI6AAAAgl6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19VFuO2zAM/PcpdAELfErk5yZZFEWxDtCmvUP/9/4oaSOxFhBqRYRlj+TRzChLyevn7cffz/K66LYspcB/fu5e/jAALB8lb8rl/dv3rVwfb5fnk+v99/b4VQgKccyJ9hX79rh/PJ9guZcVayME4bJS7U1RsECF/TrnUrmWFaoxqWjOEfOYNEFyIKG2FkhLIPfmvU+AEkCsXaLt3xZklRlQy1a4onWKdWJFd7KuE2CLFbmqkLWWbJU1aEyAPYBS3ah1SCCieIMJ0AKoldlIPciyEBlPcL4vGNqASKHYs5nOcBj+xHtDIYlRdTW0md6IO1DUwpF4rwDONgPSLiOg2SGeAcXuJ0AOGWOvpB0992rNeps5iJLIsBgiC7zrA4hTfVAzF7Gh5JlfDQmEfIZMc1au1J3JgnFzIZ5qlO6sUju3oBoigIRTMxsx7Vm19s5Haj1IwFQlP5CsJM1zSxE79JlOBAdRcyXqe+jJu83y9r7dvhyn44Bd7tvtPGCU/TxFkY7C51GR7OeByKZn7GNQ2hluid7PCEt0O4Mq0f3Mo0THMXeSBXEImGRBGpIkWZCHyEgWlCEauBcdEpDD8HdwWrJgHxyVLGiDc5IFfXBIstBoxM7wtTDhQfDFj3bGMuibhAkGemnRaEiOn/+Wcb/8AxJ6Bo7AH14pAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAEIelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAABiVHZA7TsYwEISvQgmSs9r3QxE9HQdAVOn/E3B4xnaa6PN4Zna/Px959Hk99uxjj/68vn5fcgHvI29/75dQqrCvS6kyxNd9MbVpeCxceo+smykTqDexyul1C5Xj2+9cLGLdRtKlRzOjXZuE7x84hgUc1u00rXmQiE+uO8gMaMHZFc8hQTgaKaK6YazU4upQTLT0Bh6dsWDLPHbasGwtEzdrpp4xNEoGrLMr92SYh8XlpLMI0lG/4ZVrq911gIy0xgx5Oa4G4lSWUajEjv4gQVWGbTFNRnIfZKF+RsNmZM8Gq56Axd6pTqHhx98/2xxVMHMrnr4AAAAASUVORK5CYII=) |
관련 화합물
힐 시스템의 공식은 C16H11N3O
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |