몰 질량 of C14H19N (PD-137889) is 201.3074 g/mol
C14H19N 중량과 몰 사이의 변환
다음 물질의 원소 조성 C14H19N
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 14 | 83.5289 | 수소 | H | 1.00794 | 19 | 9.5132 | 질소 | N | 14.0067 | 1 | 6.9579 |
몰질량을 단계별로 계산하기 |
---|
먼저 C14H19N에 있는 각 원자의 수를 계산합니다.
C: 14, H: 19, N: 1
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C14H19N) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) =
14 * 12.0107 + 19 * 1.00794 + 1 * 14.0067 =
201.3074 g/mol
|
화학 구조 |
---|
![C14H19N - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT4AAADjCAYAAAAc73h1AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEhA7c6OfgAAAAAZiS0dEAP8A/wD/oL2nkwAAHstJREFUGBnswQl8HASdKOBvkvSCXuGSo1zhqlQXoQoCRSkWXQ8Q0OJdWIUgoFZdsU/fqnXVNVRRuqvPDYJg9alUucRFoEBXFhWxIFcpUFvO0oO2KYXeyfzfz81zvegkaSfJzOT/ffVSqgx1eCU2Y72UUqpxJ2I1Au04X0op1aghuByBQCAQaJVSSjVmAuYjEFiEl+HXCARmok5KKVW50ZiJDgQW4s3+0pexGYEbMEpKKVWpk/A0ApvRgiFe3ASsQOB+7C+llKrI/rgBgcB/4VBdOwDzEViJ46WUUoVrwFQ8j0AbpqJO943ATxHYhH+QUkoV6hW4C4HA9djLtqlHCwKBmaiXUkoVYge0oB2Bx/BG5XEWNiHwc4ySUkr97M14HIEtmInhyutYLEfgAewvpZT6we6YhUDgd3iV3tOE+QisxPFSSqmPFDAFqxBYh2mo1/tG4KcIbML7pZRSL3sZfoVA4GfYV9+qRwsCgVY0SCmlMhuK6diIwFJM0b8+gE0I3IhRUkqpTF6DBQgUMQs7qQzHYjkCj+BgKaW0HRrRiiICj2CiytOEBxFYiYlSqjEHYjq+gr2l3jIZKxDYgOkYonINx3UIbMH5UqoRr8BGBAKBVWjBBNRJ26sJNyEQ+AXGqg71aEEg0IoGKVWxo7AZgc1Yg0AgEFiGK/BO7Cz1RAOm4gUEVqMZBdXn/diEwI0YLaUqtC8eQ2AdDtTpJTgdM/E4AoFAB+ahBZMwSNqaI3A3AoHZ2FV1OwbLEXgEh0ipiuyHxQjci/1tXROacT02IBAIrMRsNGMv6Q9GYSbaEViE16sde+MeBFZhopSqwCF4GoH/wkjdNwyT0IL5CAQCgflowSQMNvCchCcR2IKZ2FHtGY5rEdiC86VUwV6KJQj8AiNsnyY0YzaeQyAQeAFzMBX7qG174icIBO7GEWpbAdMRCLSiQUoV5hVYgcCNGKa8GjABLZiHIgKBwCK04iQMURvq0Iy1CKzBVNQbON6FDQjchNFSqhBHYCUCN2Co3rc7pmA22hAIBNZhDqbhparT3+FOBALXY28D0zFYhsCjOERK/eyVWIXA9Rii79VjPKZjHooIBAKL0IrJGKGyDcN0bEJgCd4mjcHdCKzCCVLqJxPwHAJXYpDKsCsmYxZWIRAIbMAcTMN4lWUiHkGgA60YIf3RcFyLwBZ8SEp97DV4HoEfokFlqsd4TMMcbEEgEHgMrZiMUfrHSzALgcB9OEp6MQVMRyDQikFS6gNvwHoELkWd6rEzJqMVTyMQCLRjHqZjPAp6VwFT8CwC6zEdg6WuvAsbELgJo6XUi96EDQi0ok51G4dpmINNCAQCyzEbU9CovA7ELQgEbsPBUk8cjWUIPIqxUuoFb8FGBP4PCmrLjjgJrXgSgUCgHfPQggmos20GYRo2IrAMU6RtNQZ3I7AKr5NSGZ2OzQh8xcDQhKmYg40IBALPYjaasafumYD5CBQxC7tI22s4rkFgCz4sbc1gvBafwpfwEmmr3oUtCLQYmHbAJLRgAQKBQAfmoQWTMMhfGo2Z6EBgIV4nlVMB0xEItGKQgasRE9CMFszGPGxGIBDYhLHS3/gAOhD4nPRHh+CjuBHrEQgEVuFK/AOm4GkENqMFQ6Te8k6sR+BmNKpdYzARZ2MGrsYD2IBAIBAIBIpox2psRmAVBkv/oxkdCPyTtDXDMAktmIdAILAKgV9grNQXjsZSBBZirOrViPGYjOmYjXlYi0AgEAgEAqsxD7MxHZMxHsP9ySvQjsAPpf92Looo4qNSTzThPDyIwC0oSH1pL8xDYDVep3I1YjwmYxpmYR6eQyAQCAQCgdWYh9lowRSMx0jddw62oIjTDXAXIFDEh6Vt9RoE7pP6w3BcjcAWfET/acR4TMY0tGIOliIQCAQCgcBqzMNstKAZEzBK+XwEgecxzgA1DYEOvF/aHoOxDkXsIvWHAqajiEArBukdQzEOkzENrZiDRQgEAoFAINCGeZiNFjRjEvbQdy5H4BGMMsBMR6AdZ0jlcAsCb5P60zuxHoE5aLRthqAJJ2EaWjEHi1BEIBAIBAIbMR+z0YJmTEKTyjAUdyNwHQoGiC8i0I73SuXyvxH4htTfXo2lCCzES724wWjCJExFK+ZgEYoIBAKBQGAjFuF6tKAZk9CEgsq3L55F4NNqXAFfR2ATTpPK6RgE5kuVYC/MQ2A1PosL0Irb8CSKCAQCgUBgA+7H1bgQZ+F47KU2nIh2dOCNalQB/4bAJrxVKrcGrEURu0uVYEdcjSKeQyAQCGzGIsxBK6ZiEppQr3oN1T2fQWA1mtSYOlyGwHq8XuotNyLwDqlSvBaBtfg6zsOJ2B/1qlcjxmMypmEW5mEtvqp7CrgKgXuxgxpRjysQWIdJUm+ahsC/S5Xi+wh8QfXZBa/GFHwBP8I8PIdAIBAIBAL/V/eNwEMIfF8NqMf3EHgBE6XediQCj0iVYDTWowP7qUyjMR6TMQ2tmINnEAgEAoFAYDXmYTZa0IwJGK3nxuI5BM5TxQbjKgTW4GipLzTgOQT2kvrbxxC4Qf8agnGYjGloxRwsQiAQCAQCgQ2Yj9loQTMmoUn5nYoiNuM4VWgwrkWgDUdKfelnCLxb6m8PInCq3jcETTgJ09CKOViEIgKBQCAQ2IhFuB4taMYkNKGgb30VgaXYUxXZATchsAKHSX3tEwh8W+pPxyGwFIOUx2A0YRKmohVzsAgdCAQCgUBgExZhDmaiGZPQhILKUY+bEfgVBqsCO+AWBJbh5VJ/GI/A76X+9D0EvqBnBqEJk9CMmZiDRWhHIBAIBAKbsAhz0IqpmIQm1Kkeu+EpBC5W4XbEbQgsxTipv9RjNQL7Sv1hNNahA/spbUd8EzdhMdoRCAQCgcAmPIzrcRHOxSTsizq140hsROBMFWoUfo3AEzhQ6m/XITBF6g8fReDnulaHDQgEtmAR5qAV0zAZ49Bg4GhGYAOOUGEa8RsEHkeTVAk+isDlUn94EIFTdc8ZeBMOwiDpj76NwGPYWYXYFfci8CjGSJXiMASekPracQgsxSBpewzBXQjcjHr97CW4H4GHsZdUSQp4FoH9pb40C4EvSuWwN1Yg8Hn9aHfMR+Ah7CFVoqsQeL/UV0ZjHYo4QCqXE7AFRZymH+yDhQj8DrtIlepDCHxP6itTEbhRKrdPIrAWY/WhfbEIgXnYWapk4xBYIvWVBxE4TSq3Aq5EYAFG6AMH4ykEfomRUqUrYBkCB0m9bQICSzFI6g3D8SACP9TLxmIJArdjhFQtrkSgWept30XgS1JvOhhrEPiYXvJWrELgPzFcqibnIvADqTeNxjoUcaDU205GEVtwvDJ7F4oI/BrDpGozFoFlKEi9ZSoCN0p95UsILMcYZfIydCCwFCOlarUEgbFSb3kAgbdJfaUONyBwJ4YogwsRWI8dpGr2AwTOlXrDsQgswyCpLzViEQLfUgZnIbBJqnZnIzBb6g3fReBfpP5wGNYh8AHbaSiKCBwuVbMDEViBglROo7EORRwo9Zf3ILABr7KdHkTgTKnaPYHAy6Ry+ggCN0n97ZsIPIFdbYcLELhEqnazEPiwVE4PIPB2qb8Nwu0I3IoG2+iVCCyUqt0/IHC1VC7HILAMg6RKsDuWINBiG9WjDYF9pGq2DwKrUCeVwxUI/ItUSY7GJhQx2Tb6KQLvk6rdYwi8Qtpeo7AORRwoVZqpCDyPcbbBxxG4TKp230HgY9L2+jACN0uV6nIEHsEoPXQ4Aoulavc+BK6TttfvEHi7VKmG4W4ErkVBD9RhJQL7SdVsDAJrUC9tq2MQWIZBUiXbDysR+JQeugaBM6Vq93sExkvb6nIEvixVgxPRjg78vR74CALflardtxH4hLQtRmEdijhIqhafQ2AVmnTTyxF4Uqp270bgP6Rt8SEE5kjVpICrELgXO+iGApYjcIBUzfZAYC0GST31OwQmS9VmBBYg8D3d9GMEzpKq3cMIHCX1xNEIPIshUjUai7UInOuv1Plbc3WaKFW7uTpNlHribJ0uwyapGj2MZp1m4jhdeCkCz0jV7nQEbpK6axReQBEHSdXuawgsxd5KKGApAodI1Ww3FLEOg6Xu+BACc6Ra0IC5CDyH4Ur4IQLnSNXuQQSOlbrjdwicLtWKg9GOwD1KOAeBH0nV7t8Q+CepK69G4FkMkWrJWQgETrYVByOwHAWpmp2GwK1SV76DwIVSLVqPwGeU8DQCh0rVbCd0YAOGSlszCi+giIOkanEO3oehSnsTAkXsoYTvI3C+VO3uReA10tacj8AtUrUYjOUIHKm0WxCYrwsfQOAnUrW7GIHPSVtzDwLvkKrFOxG4T2lDsQqBN+pCEwIrUSdVs7ci8J/SizkKgWcxRKoWtyJwntLeh8BduulxBP5Oqmaj0Y5N2EH6a5chcKFULQ5AEeswWmm3I3C2broCgalStbsbgROkPzcKL6CIg6VqMQOBS5U2FkU8jxH+vzqlzdVpolTt5uo0Ufpz78GOmItHpWowGGfo9G2lnYMCvo/nddPeCLShXqpmb0bgDunP3YPAO6Rq8Q4E7lPaEDyLwBF6aDECh0vVbAS2YDN2lP7gKASexRCpWtyCwHlKey8Cv7UNLkPg41K1+w0Cr5f+4FIEZkjV4gB0YD1GK+12BM62Dd6LwPVStWtB4MvSCKxFEQdL1eJCBC5T2lgU8TxG2AZ7IrAG9VI1ewMCd0rnInCrVC0GYzkCr1ba1xD4dy+ioHsexUE4Er+VqtVwtKEOt2EF1qANbWhDG9agDW1ow1q15x4cjnfhR1I1OB1X4n4cZuuG4Cnsilfibn+lQffMxUGYiN9K1aiAf0YDipikZzaiDW1oQxva0IY2tKENbWhDG9qwAu0qy5E4HKtwjVQtmnW6RGlvx664F3d7EQ26Zy6aMREzpGpTwMX4CNrRgHtwERoxGo1oRCMaMRqNaMRIDMUe2EPPtaENa9CGNrShDWvQhja0oQ1r0IY2dCi/s3W6HJukatCEidiAHyitWadv2YqC7tkNy7AOO2GLVC0K+AbOwyacie9gCPbF07pnGBrRiEY0ohGNaEQjGtGIRjSiEbuiwbbbiDa0oQ1taEMb2tCGNrShDW1owyps8rdGYAlG4FAsUNopKOAaqT+1YBoux/tt3SFYgHXYC2u9iAbdswIP46V4JX4tVYN6XIozsR6nYA5Ow2S8GzN0zwZswDN6rhGNaMRoNKIRjWjEaDSiEY1oxGg0Yij2wB56bh3a0IY1aMNuGIFfYIHSjsbVeAEPY4HUHwZhik6XKK0ZBfwAa5XBNxH4tFQN6jELgRdwgj95CwLzVb5h2BPjMAEnYQqmYjpmYhauxx2Yj2ewEYFAIBAIPIO5uudyBB7BKKk/TEbgfqUNwQoExiuTyQjcLFW6QfgJAmtwjL/UgKUIjFe7dsQYvByvwcn4NF5A4HxdG4a7EbgOBamvzUHgQ0p7DwL3KqNdUcQ6DJEq1WBcg0AbjvLivo7AxQaeU1HEZhyna/tiJQKfkvpSEzqwHo1K+08EzlFmDyAwQapEQ3AdAqvxKlt3OAIrMMjA81UElmJPXTsR7ejAG6W+8mUELlfaISjieYxUZv+KwGekSrMDbkZgOf5O1+5D4GQDTz1uQuBXGKxrn0VgFZqk3jYIzyBwtNIuQqBVLzgVgdukSrIjbkVgGV6mey5A4McGpp3xGAIzda2AqxC4FztIvWkyAvcrbTBWIPBKvWAndGADhkmVYBR+icCTOEj37Yl2bMLOBqbDsR6BM3VtBB5C4HtSb7oZgQ8r7d0I3KsX/Q6B46X+Nhp3IvAEDtBzP0fggwauZgQ24AhdG4vnEDhP6g37owPr0ai0uQicoxd9DYHPS/2pEXch8Bj2t23ejcCvDGzfRuBx7KJrp6KIzThOKrcvI3C50g5BEc9jpF50EgK3S/1lN9yHwCMYY9sNwxoEDjFwDcFdCNyMel27CIGl2FMqlwY8g8AxSvsqApfoZaPQjk3YUeprL8EDCCzAnrbfZQh8wcC2N1Yg8Hlda8BcBH6JwVI5vB2Bh5Q2GCsQeJU+8FsEJkl9aW88isC92FV5vBaBx1FnYJuILSjiNF3bDU8hcLFUDjch8GGlvQuBe/WRGQh8Ueor++D3CNyDXZRPAYsQOF66AIG1eKmuHYWNCJwhbY/90YH1aFTaXAQ+qI+8CYFfSn1hPyxGYB52Un7/jMB3pAKuRGABRuraOQisxxHStvoXBK5Q2gEo4gWM1EdGYDO2YITUmw7B0wjcgZF6x4Eo4nkMl4bjQQSuRkHXLkXgMews9VQDliBwrNK+gsC39bE7EXiD1FvGYgkCv8AIveuXCLxH+oODsAaBj+vaUNyFwM2ol3ribQg8hIKtG4zlCLxKH/syAi1Sb3gFViAwF8P1vnMQuFH6o5NRRDtO1LW9sQKB6VJP3ITAR5T2TgTu0w9ej8BvpHI7AisRuAFD9Y1RWI8OjJH+6IsILMcYXTsBW1DEqVJ37I8OrMdOSrsNgXP1gx2wCe0YLZXLK7EKgesxRN+ajcAnpT+qww0I/AZDdO2TCKzFWKkrX0Lgu0o7AEW8gJH6yR0IvFkqhwl4DoHZGKTvnYTAfOnPNWIRAv+uawVcicACjJC2pgFLEDhWaTMQuFQ/+hYCt0nb6zVYi8AP0aB/NDBiMZ+6g/mHS3/uMKxD4CxdG44HEfihtDWnIfAQCrZuMJYjcKR+9I8IrJO2xxuwHoHvo16/6vgaEcRM6a+9B4GNeJWuHYw1CHxMejE3IjBVae9E4D79rBGBwGRpW7wRGxC4BHX6XRxBBLGCGCT9tW8g8CR21bWTUcQWHC/9uX3Qjg3YSWm3InCeCvAkAoHNmIvJGCl15S3YiMC3UFAx4n4iiJOlvzYItyNwKxp07UsILMcY6Y++iMAspR2AItZhtAqwD36PIgKBwEbcjI/jUOmvnY7NCHxFxYkLiCB+LL2Y3bEEgRZdq8MNCNyJIVIDliAwQWkzELhUhRmEMzAdc7AZgUBgGWZhMkYb2N6JLQi0qEixJ9FObCJ2ll7M0diEIk7XtZ2wCIFvSachsAAFWzcYyxE4SoXbGZPRiqcQCATaMQ/TMR4FA8cH0IFAi4oWNxJBnCttzUcQeB7jdO0wrEPgAwa2nyPwUaW9A4H7VKFxmIY52IRAILACszEFO6ldzehA4J9UvHg3EcSvpFIuR+ARjNK19yCwAa8yMO2DdmzATkq7BYHzVLkdMQkz8QQCgUA75qEFk9CgNpyLIor4qKoQw4g1RBBjpa0ZhrsRuA4FXfsmAk9gVwPPFxGYpbQD0IH1GK3GNKEZ12MjAoHASsxGM/ZSnT6BQBEfVlXiMiKIL0il7ItnEfiUrg3C7QjcigYDRwOWIHCc0i5E4DI1bgdMQgseQiAQCMxHCyZhsMo3DYEizlN14rVEEI8TdVIpJ6IdHXijru2OJQi0GDhORWABCrZuMJYj8GoDTBOaMRtrEQgEXsD1aMbeKs90BNpxhqoUBWIREcTxUlc+i8AqNOnaMdiEIiYbGG5A4KNKOx2B+wxwQzEJLZiHQCAQWISZmIQh+tcXEGjHe1W1+GciiO9IXSngKgTuxQ66NhWB5zFObRuGBdiAnZV2CwLnS39hd0zBbKxBIBBYhzmYhrH6TgFfR2ATTlP14kCiSDxPDJe6MgIPIfA93XMFAo9glNpWwKFKa0IH1qNR2qp6jMd0zEMRgUBgEVoxGcP1jgL+FYFNOEXNiF8SQbxH6o6xeA6B83RtGO5G4FoUDGwtCHxH6pHdMBmzsBqBQGA95mAaxiuPOlyGwEacpKbEB4kgbpK661QUsRnH6dp+WInApwxcg/AMAq+Wtlk9xmMa7kAHAoHAYrRiMkbquXpcgcA6TFJzYhSxnuggxkjddRECS7Gnrp2IdnTg7w1MkxG4XyqrXTAZrViCQCCwBXdgGsajoLR6fA+BFzBRzYrZRBCflLqrHjcj8EsM1rXPIbAKTQaeOQh8SOo1dRiPaZiDzQgEAsswC5PR6C8NxxMIrMHRalq8hQhivtQTu+EpBC7WtQKuQuBe7GDgeC2K2IBGqc8Mx0loxVMIBALtWIFf4FwsQ6ADx6p50UAsJYIYL/XEUdiIwBm6NhoLEbjcwPFrBB6V+k0Br8D/wlxsRiAQCHTgHQaM+DoRxEypp85BYD2O0LWxeAanq32DcQI6EDhbqhi7oQUPYTOexCkGlDicCGIlMVjqqUsReAw769owtaURE9CMFszGUgQCgfVSqjxxHxHEyVJPDcVdCNyMerVnLxyPs3EhrsYD2IBAIBAIBALteBJH6GUFKfVYXIAZuIrC26We2ht3Y1d8HtNVn0Y0oQlNGIdDcTBG2Lo2LMZiPIT5WIaH8aw+UpBSj8UeeArt2J3CGqmnTsBNqMfbcI3K04gmNKEJTRiHl2OkrWvDYizGYjyE+ViItSpAQUrbJD6IOyncK22raWjB8zgSD+t7jWhCE5rQhCa8DLvbujYsxmIsxmI8hAfwnApXkFLqLwX8CKfjARyNdcpvKA7AoWhCE5rQhCZbtwaLsBiLsRiLMR9LVbGClHokTsJbdLqNwpW2KhrRotM3Kdzvv8Ue+LxO36Bwv5JiAqbo9HEKL6gdw3EnxuEqvN22GYK9MA6HoglNaML+KHhxm7AI87EYi7EYi/EYQkopphNBBLGWGGOrYm8iiCBO8j/iUCKIIE7WpTiLCCKIXdSeg/E8AtfausFowiRMRSvmYBE6EAgEAoHARizC9WhBMyahCQUDUIOUtt0IXIy3S9vjUfwbPoW34pt4Di/HauyNAzEGBS9uI36PhViI32MhFmKJ9BcapLRt1mEY3ka8hcLPpO3xaRyPo3GeF7cFT2ExFmMxHsJ8PIEOqVsapLRtluEOnIFvEnMprJO2x/GYjddhA57GDbgdC/EkOqTt1iClbfcZTMY++Az+l7Q9NuMUqdfVSWmbFZ7CDJ3+kThMSlWgTkrbZwYeRwO+QRSkVOEapLRdChuIT+AnmIAP4FLddwlxsdJGSKmMGqS03QpXETfgTbiQ+CmFFbrnJVLqYw1SKo+pOAE74Us4W/d8DL9Q2in4rJTKpEFKZVH4PTEDn8X7iVYs17XFFH6npBgvpTKqk1L5fBmLUIeLpFSh6qRUNoWNOF+n1+BUKVWgOimVVeEmXKPTZ6RUgeqkVH5T8QJ2kVIFqpNS2RWewhelVKHqpNQ7LsIDUqpADVLqmbtxCZ5VUqGdOAdn6vSEP2nDJTo9rmsLcIlOG6SUUu+L3aWU0sAR+xMriFaiQUop1bYYQTxABPFzol5KKdWuqCOuJ4J4iBglpZRqW3ydCGIlcYCUUqptcSYRxGbieCmlVNtiArGRCKJZSinVttiPWEEE8VUppVTbYgRxPxHEjUS9lFKqXVFH/JQI4iFilJRSqm3xNSKIlcSBUkqptsWZRBCbiYlSSqm2xQRiIxFEs5RSqm2xH7GcCOIiKaVU40Zy9XVEEP9B1EsppRpWj59hE1/4MTFSSinVuK8isAoHSimlGncGApsxUUop1bhjsRGBc6SUUo3bF8sR+LqUUqpxw3EfAjehQUop1bA6XIfAAoyWUko1bgYCq3CQlFKqcVMQ2IwTpJRSjTsGGxH4oJRSqnH7YhkCM6WUUo0bjvsQuBkNUkqphtXhWgQexmgppVTjxuBxrMJBUkppgHgJXi2lVFJBKmVP1OF5PKe0Buyu00psVD77Ym+MwhosxAoppdQLViMwQ9fGIhA4xfbbAZ/EQgQCgUAH7sDrpJRSma1GYIaujUUgcIrtsx8WIBAIPIl78DQCgSKmSyn1SJ1UaUbgVozV6QociH1wBMbgpbgGBZyF3aSUUpmsRmCGro1FIHCKbTcTgcB0W1fABdhDSimV0WoEZujaWAQCp9g2I7AWgbtRJ6VUdnVSJTkBI3T6FopSSmVXJ1WSo/zJbVJKvaJB6o5xOENpe9h+Y3TahMeklHpFg9Qdb8Kb9L7ROq1FSCn1igapOxZivtKGY5LtEzoVpJR6TYPUHdfik0obiwW2zxqdRqIORSmlsquTKskTOg1Gk5RSr6iTKsld/uR1Ukq9ok6qJLdhjU7nol5KqezqpEqyHt/W6TB8Tkqp7OqkvnIS5mIZFuMqHO5vfR6P6vQZzMIB/lIdXo+f4G1SSqmMViMwQ9fGIvy/9uCepcoAjgPouT6QOKVQRFFhm9Xk0MsXaBeEvoGrg4O4CM0uLW02NdTeUB8gaHFVWzIqMHDQHG6gUvff0CAX5UoQD3T9nUNhRr8F9PAK83iCb+jirpNuYgOFQmEL77COAxQKb0VE/EN7KKw42xQKhRnHOniJJf3uobDidGNYxEcUCoVC4TteYFpE/JWOGOQyRvADXYM1uOSPfRwa7Bq28RxzBruF65hAF1/xCT0REf+JBk/RwyMREUNsFq/xBbt4LCJa14g2XcUVHOEOLuINDkREnAMP8ROrIiLOkU1siYhWjYg23MaYfg3GcSgiYshcwGe8x32M4gZWUVgWETGEHuADCoXCLzxDIyJa1RFt6WAakzjCGnZEROt+A+ltrar/nxyoAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE4OjE2OjU5KzAwOjAw8t78bgAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxODoxNjo1OSswMDowMIODRNIAAAGgelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAADiNfZNZbuMwDIbffQpeoAZXUXpskqIoijpAJzN3mPe5P4aUkchFhcqWoOUTzeX3Atk+L+9//8Gj8WVZAPCHt7UGfwQRlw/ICZxeXt82ON+eT/ed8/X3dvsFZEAed+L5yj7frh/3HYIz0CrOlTQm1BqhAq7Y27jJweFaqagqPGGAUludgNINumqRALtp5jYBNUBZ4yxMJUjmZjPQOujVrEgcs5iqTLgSHK/VXFzCBSVxn4XiwUUEpaKg5wybMc2+XGHrsRYqjumjITvahGxpM2Jg4iR5LeFtAt9Iwh2NYKl0o6SkbRYQZXGeJHJdS+2euojXqVXeUSsuJQFnZJzVh7JA4aA2NixZqlK08ozU3VPU2rylSqx6mdq0rg5O9bSoAQU4VdHLdvmivl2Pp+t2GXoMGQIP2Wl0GeLS7ENC+dgQSiygDD2EIfBRdopeR20pehsFzFM6lon6QIdqUB/4kHTqgxySS33QQxKpD3ZIlqZvj3X6mf/qY8P3K37M2jFHub7/7zFf/gOD1cvb6ZbhpQAAAB10RVh0cmRraXRQS0wgcmRraXQgMjAyMy4wOS4zAO++rd4Af2KaAAAAyXpUWHRTTUlMRVMgcmRraXQgMjAyMy4wOS4zAAAYlR2POXIDQQhFr+LQruqh+OzUhJPrErqGDm8QWb/mLzyvB/Ls4HnjvQP5+fxeIAgkzyUU7nHuiwmBGAJylsQXRbHyMCZuF7QNBaU7YhdhsB6khK7o3UvVrC/ySI0zRFh4kZC1OM4YRFh9rdiqa4h6ZZ6baUIafYQw5Nzzk1KrWX5uofLUnLdBV6GUtQeMUt1Ml4isxfbz3Nsm0Cx0ybiJbk4hzGwbo3U7/H3+ARWKPZEl6AGJAAAAAElFTkSuQmCC) |
관련 화합물
힐 시스템의 공식은 C14H19N
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |