몰 질량 of C14H15IN2O4S (IAEDANS) is 434.2494 g/mol
C14H15IN2O4S 중량과 몰 사이의 변환
다음 물질의 원소 조성 C14H15IN2O4S
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 14 | 38.7219 | 수소 | H | 1.00794 | 15 | 3.4817 | 아이오딘 | I | 126.90447 | 1 | 29.2239 | 질소 | N | 14.0067 | 2 | 6.4510 | 산소 | O | 15.9994 | 4 | 14.7375 | 황 | S | 32.065 | 1 | 7.3840 |
몰질량을 단계별로 계산하기 |
---|
먼저 C14H15IN2O4S에 있는 각 원자의 수를 계산합니다.
C: 14, H: 15, I: 1, N: 2, O: 4, S: 1
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, I: 126.90447, N: 14.0067, O: 15.9994, S: 32.065
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C14H15IN2O4S) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(I) * Weight(I) + Count(N) * Weight(N) + Count(O) * Weight(O) + Count(S) * Weight(S) =
14 * 12.0107 + 15 * 1.00794 + 1 * 126.90447 + 2 * 14.0067 + 4 * 15.9994 + 1 * 32.065 =
434.2494 g/mol
|
화학 구조 |
---|
![C14H15IN2O4S - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAABqCAYAAAAhpe1YAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETEpDsNFcgAAAAZiS0dEAP8A/wD/oL2nkwAAF+pJREFUeNrtnXmcXUWVx783SQeyYCBCCCHpJCwBwyogCoqiRkQQFyQqzICiM8FRx7DIBEHGOG7RDy5x0CEzSOwoLs0iGmZkj2CAJK9emoZEiCGQkA3I1klIZyN95o86l1fv0svr9Fvubc7383mf7lf3LfVu1f3dc6pOnQKjGvQDxgJ1dioMw+jNfAzYDgiwDTjLTolhGL2N9wCPqtCFj93AD4FBdooMw8g6xwKNgcCtA74DHA78XAVPgFXA+Xa6DMPIIkcBs4A9KmhbgWnAmxKvOwGYHwjibGCknT7DMLLASGBGYLltA6YDwxKvi4L/+wCTgC36nhZgspYbhmGkjjerBdeqorVLhW9EB6//93asuRHA7YG19yhwjJ1awzDSwmBgilplArThx+yO7OQ9g/BjeQJsAr6QsObOA14IhHM6NqlhGEYN6a9u6IuBRXY/8NYS39+eNXdscHyICt2revxZ4AN22g3DqCZ9gInAc4FYPYYPO9kburLmTgeeCr6rETjImsEwjEoSqTg9GYjPUyp+PSVpzS2jOCC5H34S4xU9vlGty8iaxTCMcjMBcIHQPa+CU+5Z1JMS35O05g4D7g2OPwwcbc1jGEY5eDvwYCAwK1Xo+lXwO0ux5iYCL+vx7cBUYB9rLsMw9oZ3qXXVpqKyHj8TO6CKdTgMuKcTa+4AfNhLXMclwHut6QzD6A73BSKzRa2nN9WwPhOBlzqx5t4NPE0hJGYWPibQMAyjU95DcYjJ8JTUK2nN/T1hzdWpBbpDj68FrrXmNAyjMz6mgrEhpfU7A/hbJ9bcMcDcQLT/ak1qGEZngpIUirStcGjPmrskOB7hQ1xi0RtlzWoYRnt8UEXi3qAsng0dlrK6jldhjoXtboonVeLkBTaeZ5QNgX0FjpZeciN9o2fnGKh/W7soSwN/w09YfEZd8F34SY3YyutLYa2uYZRD7K4D1gC/Bf4q8LT40C0jo1ykInFrUBbns+ub4noPBw5JiLSkUKSN7IrdxQIrBcYFZV8RWCd+Us0svAxbeLGltK+ekx0qfGnlRfxYXsyAlFqlRna5FPhh5CMEYjfip2rxfcQEr3e4tEkBzKpwG0ZPGQc0t1PeTOep0EzwMih4rRn/HYZRDnpdsoo3uuANSFhGJniG4XmW4nyNMccBS03weoeFl9WxMBM8o9zMAi6XYEsCgYuBevxWBZmk3xu8UQd04NJuz/jvMIyeMhO/E1+zQB4f3zkMOD/yGX1M8DJs4fUWl9YmLYyyEPkwpykC38cHvb8CLIp80trMUhGXVqCPwLUCSwVaBJYJfEPSJ7A2aWEY7V/D3xSfifuDkV+vvQuYLfDtLP+uSgnQd4FzgAvwadHHA78ChuKTXZrgmeAZ6WYkPkdjPFwyHDgbv5mVWXjBnWEf4CvAZRE0R9AWwSLgc8AXpLa55pIkx76yOhZmY3hGpW6i2zt4boKnjFXLcUFiTKAJ2AkcYY1a8d9hGOb9VEnwBgM7ovaXZm0jXRaeubSGYYLXI5YD+wkcmHB198NPay+zRq2YS2sWnlHuPpX14Z7KCl7kN8CZD1yROHQ58GTkdwJLe6Nm1aXNaGeUqLQyowZ9qleN4VVqlvbzwL0CJ+KDFo/H59E6O7D4Io31SWOj2qRFddkDMhaiFUHZ7SBzIfqxaY95P2l2aYlgMX6LwV8CLcBvgHGRj9o+WeAhFcW0NWrWl5aZS2tU+towC68D0XsFuK2dQ4fjd+A6SuDWqHYnMMLnvxN6zyytTVoYlfIaekUfq/jKB/GLjb8NrIjgehXBKcBJwL8AP6phg0YqbpLxRu0NnfEqkM3B8/H4CH8jHV6DTVqUyDDgH4GrBA7Vcbvr9NjXahiInKX9LLp7N84i6/CZnOPHDtOc2iDeEBjQS7yf6gpeBA74g57Ar2nZPcAcfOjKlSZ4Zb8bZ5FZEP2s8OA5k57acCXs2wyPLoW5kd8PmdXQug2WrPVDVUYXd4yjBHYL7BI/hofAqQJtAlulNlsiHqV3sGeCsgfx2x2+LWOnON6se3xGe0gbyOhE2R0gV9jVUxPezOs3qP+zln3ILLyurbwlwK/xm0p/Q8sW4PdWHQxckxKr6P1ax1zK3ddDSrBWDaOc3o+t1+6mlTdaYIfAHoETtOx4gT27h7J66a8LmVWrxMV6x3qabOTurwMuAZ4H/pQ49hLp3Dy81N5xKkgiC4ccCTLcrpyaEHs/S4KyBVp2qp2e0kVvuoAI3BWXrbiGH+QdW53j5ipVox6YgU9kuFEbcS5wTIqt8Avx+wiIPhaoZRyzVcv3y2jPWAzSmCibDfJxu2pqwonan5qCskVadqydntIFb5jA1j392f7CF/04WVMTY5xjp3O8ms/zlgp+/XDgRnzGFsHPAs7GzwiKln8TH5uXFibgV6pIYI1OTFikh1PYPPzgjPaMVSDrQD4WlM0B+ZRdNTXhdO1PjwVlz2nZYXZ6usFLF3NVfgGrnePBuMw5fu4c4hyNFfjK/fBxf1u0wfYAjUHDDQGmB6LxrApNLTkNP4sdC90LwCSK4yYPAqZR2DQ8tlgnkbnt9WQVyFdAVoAMNsFLxY1WgAeCsrVaZsMM3cE5hjjHeueQXI4PaNkhzrHNOdpyubKNEQxUodsYCMf9+HW9Hd3VFgWvbVRRqSbH6PfGdVinvyG0Oofi9xnYpq/ZDfweeCR434NkarNkWQVyHMhtIDeY4NWcj2g/CseKN2vZEDs93SSf52q16JyIt0acY5qW3dPDj69TK2d1QuhOKfG9k/GxRvG0fDUspjEUxhUFPyY3jeKg7EEqfpv0NW3qkh8XvGYihQmM7cBUfAbqrAjeKJBN+r8JXu34lPah3wVlu7Wszk5PN5kzh32dY6VaeZ8AaGpif+fYoKL33m5fMkKfXI6Ljz6aPwZC9zh0/7Pw42L3BZ/zF/zMVbk5VN3peFxxpwrfwe0I+JqEgJ/cwWceoJ/Rpq/9+16eg0qL3GCQS4oFD0CuBnmgIHiStQtsLD7YfhlwE9ncGfBS7Tszgz4o+I18Mskt9S2H3TJiw6iaVSCX4zIVtyVz5vhOkc9zrZbNjy2/Ej9rgnM0OYfceScro4gm4KNlqOZE4GVt7Fa1mMqxiclQteBaA7d0llp6MX30+58NhG4e8L4Sv+MMCgHJbfr5b06B0PUHmQSy1k/Yy/sSglcHsghkqwredJCHQMal/JraDx9juiU45wI041OjZYkvad1/ps+H6PPNWRW8hvqW/26o3zS1llZeP+d42jkkn+dSgOZmBjnHWue4a+7crkMsFizg9FyOh1UkxTlW5PNMamykbxmrmrSYnsRPKuwN7bmljUDyYp4APBEI3WJePztbqns/BT+xIfiB50tqJHR9QS4FWa5CJz7fnZxcLHgAcoauvrgU5GV97TaQr4KkzWLqrxb42qC9mvAz/s8E7TyDdG1v0BlXa70dPqHvqqD/mOD1wMr7dCxUS5f6sab587u2QpzjOOdoDIRunXNMmTOnoiEl78aHhYQW09AeXBT34zPGhLyT4smH5fq+ngr4kfiJjPhz/zdhTVZa7CaANAdCtwhkYkLgBife806Qg0GGgswI3tsM8o4UXEOxBb4sOK+PAWcGrxmgXkE8ZLGmdjeckhmAX+se/6Y9wf/ry9AX37iCJ0If53gilyPX1FS4ADU27+3NzcUrB3I5jsrnmeUce1TotjjHtHnzqnbn3Fc7cHcsps8AK4JO81fgXYnXvA0/ARG/5mW1zMo54RBpXdfrd2zT31JXYaFbEIjVcnVn9+KikTNBntHP2aMiWAuLKQLOU1c1bq+nVPw64jgVw/j1s/EB8Gmin/aP54J65nQ87+GE9ZqZ1RaNI1cOECRKheABzJvHwfF4XWMjfXM57nCOFc5xn3Msz+c5e948RuZyzHCO3Sp025xj+sKFVQ8biRmHz9ocd4K7gdEd3Vz0NYvauSiOVpc2dpc3qghVcsXEwWqdxnV/ovwdWE7ViYdY6F4CmQLSQwGXASBTQXbq564BuaCK7T5BRSA+d8+rBV7KmvT4hrMhuOFMSYHFFGm/XBL8rifb6avn6O+Nrb4ZpHhlz4yTpe6X9S2TGuo3r26ob7kgNYKXsODOcY7lsXsrQtTYSN98nv9UodulQcqHpKC67VlM7XXgMcCnExfFKO0wu4P3TtPxwmrxoQp04GOh/x2we5UK0nqddR1QZkE9DuTxQFBng1TSYnp7YkhgFa8PBC+VEcDtFC0T/OPxNerDyZU8z2if7kjAB2o/3R2ch/PTpCFTkT6zRm++qKG+ZWlDfYs01LdIw6iWW1MpeM4x0Tk2JF1ZDUyemculclnL8ITF1ETH6aUO1A4TZ1nepUJTKwFPjjGtBh8m1E3G6jnQ8Z7rHgT5FkgFg1SlD8iXfZZkEXjhWejzJcqbAWh8wgLfoDe1cgj4ucByuNCB7NbZ6MHVafYTT6d4rHgF8LluCPgJ+J0JQxd9ZK0vxIb6lgkN9S0LXxO6+panZ9W3TEyVS5sQtoG5HA84xybn+K+FC31WlYygHfi1MJPpgcU0WC+UzRQvbzsiJXU/Hh/yEnbgUmKWUiDgcijInXBEPEa2kNKCzDsjTDAh+ED0acD+Za78YFjzbZBX1VJ9HqSC+ebkGJ+kYf4z2gfX8/qVPKXSR63cOAynBR+036fqQjd6y2kNo1v+EgjdC7+sb5k0J5jRT5XgzZlDvzDuLpfj1FyOG52jNZ8vbO2YAQbj9+iIL5TlwP8Ebq/gM8WkMeNE3IE3Jzpwe2NM+3Ug4IfXsP4fpjA5FN9wumsxheuTw0DwCq8flRMTkzuzQcpoMckRIL/RyR7xVvF7rijTGFzSRX+0Wv171qiNxzbUtzQGQreuob5lyswx8joBn4P0a9yrybJyNrMQqRu7JJ/nk+2M6f3YOX5P9ghN/ljs5uJDW9LOCPxGS3EHzlMInxmoIvgSxeE1abHE4zGm+IbzHJR0w+wqwUQ1roZ+IJNBtqgobdLnPbCYZBjINJAd+pk7dXa7Ell1zsMnuYgt/en4uNOyM3PMpjGz6ltmNNS37FGh29pQ3zLt10dsSG+cYz7P2c6RD2Lp7m5uZlhTk3cbNGTlzlyOrG7E3I9CMoJrM1j/8ymsR96Fn4kOl7c9QHrDE95K8WxqI+0nR+1ugolqueh3JIKzu5mrUYaq0LUGYTyNfrPzihJnHopvOM8CZ5Xx80fWsc+MmfUbVqvQtTbUt/zg5pGbh6b2KsrneYdzPBQI3cp8nkm68mKic7zkHE9oaMr8efMK60rnz2dcxkQjHhh+N9lkUGAxxeK3QO/mWbjhTKaQHHVTMMbU0frkU9JTfTkPZKUK1i4VsIPUQkvEccpPNEh7kIb/bNL3tanQVfu6OYni2d+eZh46EPghOlY8cf+pcxrqW276xah1I1Lb+xYuZLyujmhToVvvHFMee6x4xquxkb7OUb9gQWHcRMXwPufYmdKZ2o5w2uCnkG1m6O+4jczl2mMshQ1o4ti5VnqeYKIaorc/yE1qobWpCLaBLIFwnEpaQM7SeMfYMvwzyEkpuOHEmYf2JldjvBSzheKlmOlNfSZwxPKruCFcHZHP841S1souXFgI5nWOmbrudlaGLrbFZHo3sdf4DsX7CWeR89RK3UUhhmxv1ifX4ip6J8j1Oia3G+R3IN9MCN7RIE0g83xChtRwGMVL1R7GB9x3RqlLMVMldAcJTBPY0daXlQsfY2sux4zQRe3UNHL8VNO+nxGLn3PscI49GQpXiQN7x2RMHF5WF/BAff4j/R1Z3zZxpLro3yOTaZteE7zR6rYeFQjeOO/yppZScjWWsj45dUI3VOD7Aq1qW+8WuHnV+d0LTHSO69UinBuUTdeyuzLSQ+MGztpeE7EbEs+y3aTPL8NIgeCBWnwPFgte6mkvV2M8iz6B4vXJ7S3FTJXQDRKYIrBJha5NYLYUZ+Qt3RdczGDneFEF7ly18g7ShAGycOFep2iqJlncTSyikCEjjluKV5JcYqKTGsHrr8kULsiQ4MW8l+K1u1uC//+OX4pZmaEGgYkCX0iUjRa4JVF2gUCjwP0Ct4iGJAjUCUwSWCOFEdP7pQwD9c4xWQXvSREfwe0c39JMyQ9noGHj6fksuU8DArcjJg4svcBEJy2CBzpRsQzklYwJHviZ8thz2IMfr5tMeRLsdip4UwV+kSg7QfwYTvz83wVWCFwk8A6BKwU2C5wjcGjgvs6T0jPylmLl9XeOZSpwF6rgvW4ToJSyD4Vo/SwxlMK60Zj/07JzTHTSJHigGx9JBgUv5jR8CqrqxNJ1JXgCBwrskMQMicCXxc9CInC5+J2Oyk4+z2fVyntu8WKv/vk8Vz91N2u2vpVbJb2zbAdQiP/KEiMpzGLGxFtGnmmiU1PBGwLy20TZSI21O8TOT9fEy1YOEDg2flC8JvJ44KXIL8oOuQt4i8DACH4SFW/pVjaWLeNX+L0Zxra2+lTww5Zx47HnsX1wExexd9k9qsFA/duasT7RXr3jsu12ydS8bZYUF0Wr8EG+A+z0lG7hvSjwSPDIBxbeheJTHiXft4+6sZVerkIuxyeaHmbrxvfzJ9GG1XFDEVgi6RwjO1KtoqUZ6xInUkgMGvOUlh1nV0xNr9YTQDa2U/6czwhtlMOlfZe0s3mHwFiBV6UK+56KELXV8YAK3L/p9/cVeFrLPpfCU3s8hV2rsjamEsc/vWZoa9nhdsWY4PUGl7YzngT2k9eP31wIuKgKg/JRhES7maZPrxE4IPIzO3G0+X9I+kz6rLqB7dU7q+55bxW+wcWPzC33S6/gRT5G5qvA7QKTBc4VH6l+NXB5tSoa+ewcD+InA67U4t/j3e1DSV9QbG8awxtggpcahuDHtMPHKDstpQve48B9ifJ1FDbhJfLxMh/HZ+i9RN2bUyKfJbeafE2/+wqB4ZH//+t67DpJ176fNmlhVILNENUXP3jBTktvNebhDzpu99Og7BEt+3qKqvpJCqlxssRntd4z9XkdhSzCRm17v43hVdqlTSHX4FcwXCaFjLTXAjcCN6eonll1A5PWnI3fGSZ4tSLycUi34pegXK9lcyP41wheTLFwZNWltfG79NCC32ApyT34YSijC/pltN5T8Ru03KAu7WjgM/jJi81AY+STb6ZJOLIqeDZ+l57b/Qrt58nyL9q56b0uLREsj+CCCBZrEoMn8GvxHsbPKj8g8HkTvB654ubSGmbhpZAbgRsin5UXtfhy+DCa2zSsJg3CkTXBazXBM8zCSxG6yuNk/JheaAHeC2yjprtPZd6lNQvPMMFLGSP0N6xt59gaahuQmfVZWpu0MEzwUkacQv3Ado4N60AIa2UpZVXwbNLCMMFLA5G/KJ8BPpxwdU9SEXwqZS5tBKnfgMjG8AwTvBRzDfA9TRc1XuCj+NUN06LirL1pELx/wq/9nUW1Mrz23DI1wTNM8FJk5f0Jv873fUAD8M/A1MjH6tWS8YFrHTMUv0rkYrU+z8+AS2tjeIZhdEm8ifDzCWtuHPAQhV2a7obChuMpYV8KO5Zdq/X8rjWpYRgd8eVA1FZTnIo+wmedWa/HtwFTApFJE/dqHW+zJjUMozM+RGEDnPasueEU9nwV/Pje21JS9zoV4XiP2lusOQ3D6IpSrLlzgeUU0jBNp3abd/fBZ7NeGgjxenziScMwjJLoypobCEyjsHn3KvxkTDWZgN8BK67j0/j9QvpY8xmGsTec04U1dwIwPxCd2fi9YivJaQnX+wVgEr1jrbVhGDUmtuZ2B9bc+Qm3chI+8YHg86BNroCldQw+ZjEWunXqbu9rTWQYRrnpypobAdwRHJ+rItVTxgAzAvd5qwrwm6xJDMOoJKVYc+cBK/X4LhWnvbHCDlUXeqd+1k4VvmHWDIZhVJMRwO2BNfdowpobomIVW2XPAh8o8bOHqki2Uhg7nKWWnmEYRs1IWnPTgUHB8dOBRXq8DXh/J581CD8mtyl4fSN+tYdhGEYq6Mqaq1O39yHan8jor27y2sBivB+fRcYwDCOVnI5PMhCLViNwUHA8Sry+DzARWBa853HgTDuVhmFkgX5qzb2iArZRrbek2E0AmgOhW6TiZxiGkTkOo7CQX4BHgLOAf8BvWhSXP6+C2NdOmWEYWSZel7suELj4sUqFrs5Ok2EYvYkDgL+p0O3Bx9INsNNiGEZv5hAVP8MwSuD/ASZVaGPRDn27AAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE3OjQ5OjQxKzAwOjAwqreQbQAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxNzo0OTo0MSswMDowMNvqKNEAAAIgelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAADiNfVRRjhsxCP3PKbhALMBgzOcmWVWraidSN+0d+r/3V8Gj7HglqzMBeexnjHmPnCCfX7effz/h6+Hb6QSA//m5O/ypiHh6hxzA5fXH2wbXx8vlOXO9/94eH8AMXGNPvN+xL4/7+3OG4A5nLd5UmwMVUpY4AQuO59jK8JFAbto6wRkLmTDhAlkzpBRtal7hTEURnVYxJZGtqHN1zJjdBN0WSIUrnGvx2t041pW1WV8A2w7snax24IIs2tsCaAnkoqrIHkBjEZMFsCeQCveASlTIWUVXQN+BVdh6piZRK1kdHVUbZ7fmEreNe7PV2LaC0g41blYpw5txMLSC8n6+qEVxxt2MuC2hNaFBYUUVy03dqPZlArJDMTKMbTGqUalloUhhi/qw1up57comtAQmSZEecw8yI6QYNVxWKlkKNsU1RBd14s7rNHucrYXIMe8eAjFMASyQSVMrEmVqGuvETrqSMWOoM8QZ8vDsjMYddaVNTo6sWLbOUHHw2m0ZkuENvKCQ7xRGH9Mq5Ot2+9ale99e7tvt6FtOO7oz33q0YK7L0Wf5qUczSVg7WkbC7GgMCeuH/CXMD5FLGM1alnREk2QlHfGkTElHdRKgpCOZdEbD6SQnGq5NuqHhbNIHDdcnIdBwPhHOw83M0pihiUJKxzxRNe71lQ6PlOWoRHI0M5Lfz3/hGJ/+AYxQFwbV8vaZAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAEcelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAABiVLVFJbsMwDPxKjwmgEiTFRYSQk0+9xIc+Id/I4zt0asMQNZ6Fos7HcTt+7s/jeL7khUf/l9/b47z3d369b0HOcwiFLo6xg8w8czCJlvjYSSmuNr6ZImrl2EVsUg4KT2ZJkJxECnKQPDnnGnvSsvIFlurCO7aSo8wmWUp0mpD6NHCmpomNjX+QT9GLNlMtP6hMdgMotFLaHxUaVWTCN1uwUQHI2axMVb8gdO1tpvA1vYRYs5BqGm5xQbrcHWModfvosMdg2tKszXGgJehGidW8LqTmqp6Vq0d2U06wjNV54KpcUIV7whtzbGsjD0c+Up25uiVcQumslq00huf9/QdXmVuMgWes/QAAAABJRU5ErkJggg==) |
관련 화합물
힐 시스템의 공식은 C14H15IN2O4S
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |