몰 질량 of Aminopyralid (C6H4Cl2N2O2) is 207.0142 g/mol
C6H4Cl2N2O2 중량과 몰 사이의 변환
다음 물질의 원소 조성 C6H4Cl2N2O2
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 6 | 34.8112 | 수소 | H | 1.00794 | 4 | 1.9476 | 염소 | Cl | 35.453 | 2 | 34.2518 | 질소 | N | 14.0067 | 2 | 13.5321 | 산소 | O | 15.9994 | 2 | 15.4573 |
몰질량을 단계별로 계산하기 |
---|
먼저 C6H4Cl2N2O2에 있는 각 원자의 수를 계산합니다.
C: 6, H: 4, Cl: 2, N: 2, O: 2
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, Cl: 35.453, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C6H4Cl2N2O2) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(Cl) * Weight(Cl) + Count(N) * Weight(N) + Count(O) * Weight(O) =
6 * 12.0107 + 4 * 1.00794 + 2 * 35.453 + 2 * 14.0067 + 2 * 15.9994 =
207.0142 g/mol
|
화학 구조 |
---|
![C6H4Cl2N2O2 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAAEmCAYAAAD/SCz7AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgAd62wILAAAAAZiS0dEAP8A/wD/oL2nkwAAJbRJREFUeNrtnXu4VGXZ/z8bNyeBAEUwk1RUTMPUyExTMbXU9A1MMS0zLcUSrbeDYq9SHt/IEx00Re2X5oFCS0HzzVBJJeQwM4CKkYipqRlyUJAz7Pv3x7qHWWz3nr3W7D0za9Z8P9e1rkv3PM/sxXc967ufZ637uW8QQoi0soiu5NiJHDsxnV4SRAiRXrIcSxbz4zIJIoSoDWaxPTlOI8utZHmILDPIMpUsd5HlXGYyQIYnhKhtptOLDOPIsjpkXi0d68lwJdPoJsMTQtQeGT5IllwzY9tAltk+y/srWf7d7PPHtpieDE8IURMsoAtZsiHDeo8cY5hLn63aGZ3IcgwZ/uHt1pBjmAxPCFE7ZLksZFYryXFw0fZz6eOzvqFa0gohaocZdCfL0i1mleG8Ek1ThieESPzs7pSQUb3BJLaR4Qkh0kmOn28xqhw/b4dxyvCEEIk3vOkhozpdhieESPOS9sWQUX1KhieESLPhvR0yqr1leEKINC9pl20xqnkMluEJIdI8w1scMqqhMjwhRJoNb04oBm+EDE8IkV4y3B4KS7lchieESPMMb1TIqObJ8IQQ6SXHDmRZt8Ws5nCEDE8IkWbTuyNkVguZwXYyPCFEOplPf7IsCRnWs8zhgFbbz2J7snx3q9mgDE8IUTPM4QiyvBsyrc1kmUqGi8lyOjlOJcP3yXAfWdZ6mz/I8IQQtclc9ifLvDbSu4eP2RgNMjwhRG1idCLDSDLcS5Y3Wkj5Pp8sE8jwOYxOW/plOJQsL/gxWkIKIWqPaTQyn/7vS/cuhBCJJ8OHydBZQggh0s1MPuAFeP7GfPpLECFEOjEayHK/P4ubT4ZtJYoQIp1kucjNbgUZdpcgQoh0kmMYWTaSpYksJ1ZoRkmDwTZ+NJTSr4Tf+UGDfQ0ONfiowQ66+kLUETMZEAovuaqCS2guMzA/zo3R7/ehfodHaL+XwS0Gr4b6hY8XDcYbDNRoECLFTKORLE+62T1ecgnGJBqeQSeDaw02tmJ0zY+1BmM0KoRIKVlu8MSe/yJX4dVdOQ3Pze73zQxtmsG3DA43+LjBMIPvGWSatfuFRoYQKWMuw/2Z3Qbm8OmK//4yG96FoTbvGa2navZngqMNNoX6fEUjRIiUMI/BoUQA51flHMpleP5iYp1/3mRwbMTvPT/0vcsMemikCFHjzKcHGZ53s5tYtfMoo+GFv3dijO9tMHimlHMSQiSUDHduSeQ5nV5pNLwFoc+HxTynr4b6PqbRIkQNk+MCN7tV5NinqudSDsMz6GOw2T9bY9AY85z6hb57ZSmxfkKIRMzsDiLLerI0kWFk1c+nTIZ3SOiz2SWe1xuh79hNI0eIGiNIuf6Kl1q8LhHn1MzwVhosiXisK2J4J4Q++1OJ5zU39B1DNXqEqCGMTmR51JeyM1hAlyQaXqlHc8M7LfTZpBLP66nQd3xGI0iIGiLL1T6ze4t5fChBRryV4T1scHnE4/kihjci9NmUEs8rHIj8SY0gIWrG7E7wYjubyHF0wmaeZXmGNyz02ZMlntdLoe8YrFEkRA2QYxeyLPWl7IUJXGqXxfB2CX22pIRz2ja042KDQXeNJCESzjS6kSXjZjd5S+WwtBuef/5m6PPdY57TEaG+czSShKiJpeyv3ewWkaF3Is+xjIb329DnY2Oe0+2hvldrJAmRcDKc7Wa3hjkckNjzLKPhHdxsT2z/iN+7VyjkZZPBrhpNQiSYHPuRZY2nfPpaos+1zNlSHmmWFqpnG985oNnb35s1moRINH35GzPc7JJ/v5bZ8HbyIOV8u78bfMHYuv6kQXeDrxj8K9T2H8qUIkSi6QQ8TG+Wcz+/YxFd69rwvN3eLaR1f9czokw1mG2wutnncw0+qPEkRKIZG9ziLKNWtn9WoqaFJwP4mcH6NnZsrDQYa6g2pSg6op4Ay/hxbcQ+3wn1OUwatpujgE3AZiLmukyK4R1g8A0/9orR7zOhfgMi9uljcLLBdQZ3GUwxuNNgnMHnZXQi4uhbHvo72QQWYeuhXRPqc4I0bBcDCeJrjZgRGEKI9hmegS0E6yrDqwidgeludn9Bqds6ZNapmZ6IY3gG9kMZXkW4yc3uVaCf5Gi/2f3IYIXBoVJDtGF4i8Ce9/9eAzZIhldWTnOzWwd8QnJ0jOFd7aPybqkh2jC8hWDDQ0b2Zxle2RgCvOeGd7bk6DjD+7DvsFgfdXeGqGfDA7C/hsxspAyvw+kFvOBmd5fk6HjTe8hH5oVSQ0QwvI+CbfSf/Rustwyvw2gA7nOzm4+er5fF8D7vI3OxBdHcQhQxPAC7OWRoP5fhdRgXutmtIGbWIxHd8DoZvOyj8xgpIiIY3vZgS/3nm8CGyvDazSHABqAJOFFylNf0fuij8wGpIdo2PAA7J2RqGbBtZHglMwB4w2d3StFWAcPbwdNEbTLYRYqICIbXCeyZkLGdX9zwbDv/+TfBPhuEtVij9KWRoDSDAU+g4OKKmd5EH6GXSw3RtuEB2L6hFxjLwfoVMbxPtxDAvBFsMdhUsAlgY4I3vzYU7AN1IvD1bnZvAjtqvFXO8PLFgN5snlJKyPBaNjwA+0XIwG4sYni7gf0P2K/BpoG95ntzi+W4eAtsBthdYJeBfdWNMy3GMJzgmd0GFPxfFdN7zkfaSVJDRDS83h6ekp+xDYn+DM+6+NL2aLBRYOPAJvkzwVVtmOG6IrPDWihENRh4x2d3F2icVcfwLvDRNFVqiGiGB2Cnh4zokY55aWENYDuDDQP7OthVYBPBZoMta8MMN4K97GZ4C9hFYCdBj/2BJCyVewDPu9lN1BirnuH1NnjPoEn1aUUMw2vwZWr4rW2Z39JaNw+CHumzuwlucIs9VKZ5Htz8Vi0DlgMZYBIwDhgFHA0MojKxqHf6eSwk2Fkhqmh6t/kIuV5qiGiGB2D7gG1oYbZVhbAU6wK2F9hxwdtjGw/Z3/isam3I+Fo61gDPAZOBG4DRwHG+BO3SASd3gf+eVcA+Gl/VN7z9faSuUOooEd3wAOynyTC8NukLDAVGAmOACQSPcRYTvEQoZogtzQ4PBfpE+L0HAev9e0ZqbCXH9Gb7aD1DasjwYhjetmD/rAHDK0Y3X9oe7WY2DnjIzXBjCWaYXyr3B/7p7bR6SpjhneWj9RmpIcOLbngQvByoacMrRmdgD4ItmOcB1xHsTnqWQjqn1o68WT6Nwr4SZ3jdvaC3GXxcitT1aBjvLwSuiNHnMu8zIQhOrhuKLZU3+XG6xlQyTe9nbngTpIZo52g6GOxwsA/VsQiX+gxvssZDMg3vIx6essqSEbskKnPluwYG1aHf+Whoibu+SMBwmovB9yN4Q7wJ7VdPrOk94aP0PKlRN1f9Vx7Hdk4Hfue1nmhgSRsBw5vBXvFauLeBXQx2ipthnxSIe4/P8q7UOEum4Z3iI3GBBdlYRbqv+JfdeNa+P8ddh/2Obi1sJ3vIZ30b2zDE5R7UPMn7jfLvGbR1eqrEcpgb3r/Ri4tEGl5ngzd8tGlzc7qv9r5gq91YvlGlc+gMtgfYMWDfArsO7AGw+WDvRdhb+wLYw0EW5gPPAY4H9ga6JkjoZ1EcXqJN7ypVNkv9Ve4F9nc3jgQXjrG+vrxtaTtZs8wrXfMxb1Fi5CrJaD+fxzXukml4A1XZLNVXuAHsfjeK+UHwcE3+O3qCfQzsRLAfQOdfAo8CLxGkXyoWI7fCzfD3wE8ISiMeSfByoaP31vYCVvrv1dayhJreFP+zeZHUSN3VvSj0fCzNhWN2YuvdE5Pc5N5pwww3EMTRTSUI0Rrjy9GhlL7x/1b/7vEaf8k0PFU2S+eVPcJfFDSBjahjIXYAPgV8BRgL3EGwI+KNNszQvM1T3me7iL9vv9DMUvvVE2h44cpmx0qRVFzVHcHe9NmdwiRapwvv31ubnx2uDhlfExAn8ehM73emJE4gz8EFl8LTPYNCwaK2za4R7Ck3u8drJKQjiWxD8JzvSOCrMfue6YY3SzImk37AOhQpngbDu8HN7l9gO0iPqtAdWOamN1RyJJOJfoGukBQ1a3bD/ZndhqAgjqgiN/j9dKukSCaHo0jxWja7wWDv+uxutPSoOnsQPPtbTZBpRSSQ59z0VNmstsyuB9jzbnYqHJMcHvP76XxJkUzO9wv0mKSoKcP7bSGRp6lwTHI42e+nF9B+9UTSmyC7axOwl+SoCbP7tpvdKrC9pUeiaARed9M7XHIkk9tQbv5aMbuDPAddU7AHVSSQK/x+uldSJJP9UaR4LZhdfw89sSDziEgoOxOEe60HBkiOZDLLTe9rkiKRZtcplGl4RlCrVSSYyX4/XSwpkslZfoFmSopEGt7/utm9BbaT9Eg8x/r99CrBDg6RMMKR4qpsliyzO8Gf2W0EGyY9aoIG4EW/n46THMlkvF8gVTZLjtntArbUZ3c/kB41xRi/n6ZIimSSjxRfRRCuIqprdt3Asm52k4PknqKGyFc22wzsKjmSyeP+V0lblarO2pvd7P4BptKatYkqmyWckShSPAmMgkFvwopcUJBH1CiHov3qiaaRQmbYwyRHVdgPWIPChNKCKpslnCv9At0jKSpOX4KaCwbcKDlSQb6y2ROSIpkMpBAprspmlaMT8CcKmXO7SpJUoMpmNcAUv0BjJEXF+JFrvgy91UsbE1Bls0RznF+gl1Fls0pwlM+qN6PCSmlElc0STgNB0WPTDViRRwhvu9aXSo7Ukq9sdpakSB6dgIV+gR6WHGWjM/C3kM6aTaeXr6HKZonlxxTqc6qyWfn4lev8CrC95Eg13YGlqLJZ4jiawvOkJ1Bls3Jxmmu7VjdA3XC9X/PbJEUy+DCF50n/QxB8rEjxjmcIQWp9A86WHHWDKpsliK7AbL8JH6LwPClf2ewcSdQh9CLYumfAXZKj7shXNrtAUlSXfKzQK2z9POla//ka4BrgS8AHJVdJNAD3u57zUYhCPXIS2q9edb5C68+TBgIb/fPwsRyYC0wCxgGjCJ7/DUJvG1vjIgrxWLtLjrpElc2qzL7+TMGAr7fS5gAgB7wFrCN4oWFFjjW+FH4QuIFgP+GxwGCgXusxDPM/HE3AiRp2dc3lfp+oiHqF6QX83cW/NWbfX3u/JX4BJwBTCTa/N7VhiMuBTGh2eIbPLPukVOcBFLLQXKVhV/fs7H/8VNmsgjQAf/CbcB5BnFBU2gqp6OZL26N9qfvzkBlujGmGtb5UbgSepJAxQ0VdBL76UWWzCnJxyGAGxVwC50MqvlHC7+3czAzHubllKGSVaO1Y76Y51WeUYwjyjA0FeiRU5xv83P8F7KBhJ5xjUGWzinEEhedJI0pcApcrpKKvG9hIN7T2LJXDs8NqMNzPeQNB9lshwiusfGWzz0uO8rEj8Cbxd1AkIaSia5HZ4dp2mGE5/sIOBt71332+hp1ogfxbe1U2KxOdgadc5Mdi3uhJD6loLGKG77ZhhhuKLJV7lnAuPYDn0Zs4URxVNiszP/Ob8DXiPU9KQ0hFsaVyW2E2xWaHLQWP3un9FvpjACFa42709r4snBKazXw6Rr96CKnYluBlzAjge8BNwJ/9GcuGNszwHSAL3OdmONF/vgql9BZtE65s1kVydAzh50nnxVwmKqSiMDs8o9lSeUULBriO4G3ylzXsRETylc1OkRTtpyewwAW9N2ZfhVS0TT/gIILYxEv9L7XJ8EQMzkOVzTqM37qYzxEvVi0cUvFpyRiZUa73UzH6nAM8DXxA8tUlvUIrsI9KjtL5jou4Eti7xCWwQiriz6jz2u0bsc80b/8tyVe33OJj4GeSojQ+RfAsqQk4OUY/hVS0n5uIV0z7S95+gaSrW1TZrB30p5CC5pqYfRVS0X728T80KyNq2JnCm3A9PqhfnkGVzWLTCfiLC/c34qVmvwCFVHQUTxMvU/TVKAtyvXOGj4HZkiI6P3HR3gJ2itHvIF8CG0Fwrmgf+aSq8yK2/zBB8aR1PkMX9Uc3CpXNPiE52uBtOOGgYCm6kXjZVLcnSO1uBJWVRPvpAvzHNT0oYp+HvP2Fkq9uUWWzKBjsbrDCYPV5cG7MJfCjLvIMFO3dkfzUdf1NxPbHe/vFKE1+vbI7wVZHVTYrYnbdDLIGZvCgxSsOcnVoCfwhqdmhDPLBuwbYLuIfn5f9ehwj+eqWqaiyWVHD+39udi8a9I7R9QS/ITcRbIYXHc//+eD9bsT2P/T2D0i6ukWVzYqY3bludu9ZvCjtXSg8INUzo/Ix3DVeFHHw7kDw4mKTXyNRf4Qrmw2THAWz299gjRveGTG6diPY/G7AZP0VKSvbUHghdFTEPr/z9pdLvrpFlc2amV1fg5fd7H4Zs3u+4tiLxFsCi9IY63rfF7H9MG//JvHiKEV62IlgH7sqmxl0MnjEzW6mBanPI7EEzhwWbGFaTfS9nqJ97OiDdyPRXww956b3RclXtzzgY+CH9W54l7nZLbMYqaENPm6w1mDd+QourjT5eiBjI7bP73qZKunqFlU2MzjKYJPBZosRuuBL4MVulDdpLFWcoyjkFowyeHsTlMNsIsheI+qPBgrPfy+pR7MbaPC2m9YlMfo1GDzg/WbFWQKLDh28C33wfiFin9u9/XWSLzVsT7zCUA9TiJOtK7PrajDbTethixGJbzA2tATeTWOuanzXB+//RWy/P4UiQkoZVPts448oFgB7ROyzJ4XyAfVT29jgFjetVyz4K1HKEvhYjbmq0ofgZVGTD+QozPbBfobkq3lK3dWUTx32h3oxuy+72a21oJhMnCXwEu87VuMtEdzhg3dcxPZf9/bPSLqaptRdTYO9jxHszU692e1rsNpN6+sx+nU2mO79/mL1W3EsaRzkg/dtggDwtugOLPM+H5d8NUmpu5oafZzkc1T2TLVKBr0M/u6mdVvMvjd5v1ctqKwlkkN+l0vUymb5Auq3SLqaoz27mm7zfpuJsbKrVbNrMLjfTWueBX/po/Y9zfutMyUSTCL5ymZPR2z/EYLnfqtQZbNaI7+raRHxdjUd70a3meiJJ2ra8Ma4aS23IM1Q1H5DPJGAGZyt8ZZIegLvEK+y2RPEL6Quqss5fs3WAAeUuAQeUw9md4TBRoMmgxExl8AvuNmpNkKyuZF4lc1OoVDZTMkeks9+bnQGfK3EJfCU1F9rgx0N3nTTuiLmEvg+7zffFLeVdPam9Mpmh0q+RNOXIGu1EX9X0+0lLoFr0uwaDZ5y03o8zptVgwu93woL0kSL5POUD+5REdtf5e3vlnSJpYHCpv9ZxNvVdLr3WxtzCVyzhjfeTes1CxJBRu13iMEGXwKfqDFXM3yZeJXNBhLEZK1Hlc2SSj4V2DLi7Wr6GEFQugFn1oPZjXDD2mAxijEbDDB4w43yao23mqKUymZTvP1Fki9xHOV/kDYTb1dTH+Alv64314PZDTZ4101rdMwl8JPe7wkFF9ck43yg3xGx/edRZbMkMhBYQrwUYPkl8B+931xihJ/Vqtl1MVjgpnVPzL7Xe783LUgyKWqP3ShUNouyR1qVzZJHZ2C6X5O/EG/icUmJS+CaX85ON+gRo8/w0BJYb+1qm3xls+9FbH+xt39Q0iWCmygk6oyzq+nI0BL4uLpSLE4tWYM9Dd7x2Z1qV9Y+XyBeZbN+qLJZUjjNr9064u1q2jm0BP6xZGzd7HoYPO9m9zspkgpKqWw20dtfIfmqxhCCrNRGvF1N4SXwVPTsvajh3elmt9C0rzJN5MMZ7o/Y/nBv/29U2awa9CIolG3E39X0yxKXwHVndhe42a0y2EeKpIr2VDY7SfJVlAaCkpsGzCferqZTQ0vgAyVl62Z3kMF6NzxVHEsn+ZsobmWzxyRdRbnQdV9BvF1NexFsJYyzu6bmjGqgwRkGl/pOinEG3zc4Lup+V4PuntfODMZrvKWWIylUNmuM0D5c2WwvyVcRDvGZeBPxdjX1DC2B07c10OBzXiHMihzrDG6z4I1NW983wov36HlNulngN8XwiO3zSSKvl3RlZwCFBA5xdjU1AJO837OkKbGHQSeDG1swt5UGLxm8Hlqahj/7rMaToPTKZitQhpxy0gg86Vo/Qbw3q9/3fisJkrmmamY3IWRkm7za2P7N2mxr8EVP45Rvu8GCJY2ob0qpbDaL+HnXRDyud43fJN6upoMJkj00AV9Mm9mdFDKw1W2VRfS9sPeE+rxmwYAX9c1viFel6ixvP1PSlYXhblgbiLeraQDwul+bn6TN7Bo8Ni5vXt+K2K/RIBPq9z8aX3WPKpslh8EU0vHH2dXUCPw1tARuTJUqBp8NmdYii5HJwotl5/v+y5QFQxTSfH8lYvvx3n6CpOswegDPu64TY/a9lkJg+AdTp4zBtSHTuqyE2eGrof5DNNbqnnwBmKiVzfagUNmst+TrEO70a7CQaGn483whtAQ+LJXKGDwdMqxjSug/MdRf1cbEtsBy4lU2e9zbj5Z87SYf1L2KeLua9gwtgb+TWnV8KZo3rF1K6P+jUP+rNN4EhT2XUQvBjPT2L6DKZu3hIII3q0a8XU3dgZz3+32qFQrVgjUrYUlh8O1Q/19pzAm2rmwWJVFEI4XA2MMkX0lsD/yT0oK57/B+/yDtiT28jmzesLqX0H9UqP9vNO6Ek69sdm7E9ld6+3skXWw6AY+6fjMIao5EZXRoCfzR1CtlsCxkWP1K6P+DUP8bNPaEk08wqcpm5edq1/otomesAfgkQfYTIyi1mH48FCVvWPuU0P+nof5jNfaEE65s9qmIffKVzcZIvsicQJBqfRNwdIx+24WWwPWT2MPggZBhnVpC/0dD/Ydr/IkQ+cpmd0Zsf5y3fxnFdEZhF2Cpa3ZhzCVwvh7JMzGXwDVveGNChnVbzL49PIFAvr8qkInmN+Qmgor0USqbNRDUxzDi1UetR7pRCPKeTLy321d4v//EXAKnwvD29Cpi5gV2esfoe3bI7J7UGBQt8AjxKpuNCd3EonV+7Tq9SLzoiuNDS+D6zHRk8OeQcd0SsU8/g7dC/U7WGBQtkK9s9lLEZaoqm7VNfjfLGuCAEpfA9fuc1GBvgzUh87rSiuTNMviQwdxQ+0dNAaOiZcKVzaI+VL8XVTZrjf3c6OKm1QovgadQ7/erwVkGm0MmNs/gXDfDvgY7Ghzsqd7Dz+1etnp7DiDicinxKpsdhiqbtURfYDHxdrHkyWeYXoRSuW0xvVOamVlbxyxLY0YF0dG0p7KZ3vwHNAAPuCazgK4x+p7u/daiNFzvM73+XrTn9VZMbpPBTIPTlQ5KxCBfG+FHEdsfC3wOjbE8P3L9lgG7xej3MYJM1EaQcFUUMb+9DI51czvJ4HCLFl4gRHPylc3e0DI1NkcRvMTZTLxwnT4EL4uMiC8jhRAdR76y2QhJEZmBwBLi1f3NL4H/6P3mUsI+eSFE+/hvvwH/LCki0RmY7pr9hXgVxy7xfstjLoGFEB1EKZXN6plfuWm9SrzEHp8JLYGPk4xCVI98ZbNrJEVR8tlm1gKfiNFv59AS+DLJKER1+aTfjEuJVtmsHhkCvOc6xSmb0JmglogBj8VcAgshykTcymb1RC+CVPcG3BWz7y9LXAILIcpIfi/odEnxPvoQbP2K+2b1VNd0HXCgZBQiOYQrm40mKBrdRbJsoYF48a57EdQPiZNSXwhRQZ4FXvObNH8s9+XuJIIH7iOBoWjvZzF6UohvVD0QIRLIeRTeQE4nSDW+qZn5NT/eJthDei9BwZ+zgMMJ9ubWc+aP/Ja9Z33mLIRIEK0VjukMDCJIITWKID38JJ/xrWzDDNcTZBGZCkwgyPWWnx32SLGW3/N//0rgIxpaQiSLcOGYuBXu+rqBjXRDm+AGt5ggkLmYIYaXyuPcUI+mtjP9HOxG3wScpKElRLLoRLClrByFY7q2MjtcQJCSqhQzHERy49gGAK/7+f9EQ0uI5JEvtF3pwjGNRZbK77ZjqdyzSjpu4+djwDT/9wkhEkSSC8cUWypvbsfssFxcQyEbtJLvCpEwarlwTNcis8M1bZjhWjfNhzpwqfwFgmd2GwnS4AshEkTaC8f0BQ5twQzfacMMNxRZKvdq5XftGfre/9bQEiJ53E6hcEzvOvu37wB8imC/8FjgDoKN/W+0YYb5rNBPEWSWGQucSSG4+PcaVkIkj3DhmAMkR+Sl8upWTHApQVKAXpJPiGQRLhxzpuSIxTbArgQ1QM5xM3yGQqp2IUSC6EuhcMzNkqND6E5QrcwInvMJIRJAuHaqCsd0LONd1wmSQohkcCml1U4VbbMHQUjKKurvBZAQieNIVDim3DxOIYegEKJKhAvH/FhylI2RrvEL1HdKLCGqRrh26lRUOKacNFKI49NOCyGqwI2ocEwlySdhUHZjISpMuHDMJyRHRRhI8Kx0PdBfcghRGcKFY0ZJjooymdpMxiBETdKTQu3UuyVHxTnOtX8FPTMVoqw0oMIxSbgGi/waKARIiDLyfVQ4JgmM8eswWVIIUR4OJsjl1gR8UXJUlX4EL4s2ESRZFUJ0IAMoxID9r+RIBPf69bhSUgjRcTQCf/Wb6wlUOCYpHEahvkVnySFER3All9DACoLSgAMkSKJ41k3vZEkhRHvJ8kWyNPFHFrMdB0uQxDHaDe9xSSFEe5jLnmR5hyxGhm9LkETSi0IA+D6SQ4hSmEF3Mswli5HldxIk0dzqhneDpBCiFHLc4Wa3kJl8QIIkmv3c8FagQHAhYpJltJvdKnJaJtUIM1HRJCFiModPkmWdG97pEqRmONMNb5akECIKM9iOLP90sxsvQWoKVTYTIjJGJ7L82c3uGRbQRaLUHDe44d0qKYQoRoYr3ez+wzw+JEFqknxls9UE9YGFEC2Y3fFk2UyWTczhsxKkpnnMZ3nnSwohmpNjF7IsJYuRUwbdFHByYHg7PiMphAgzjW5kyfhSdgqm0n8poDPMeBhsHdjhkkOIwlL2dje7RcyljwRJC3YFmIHdKy2EAMhyupvdWuZwgARJleHtDLYRbD2YstuIuje7j5FltRvemRIklab3oM/yLpYWon6ZSx+yvOQZUG6WIKk1vGPd8F4FU2UzUY/3AA1k+aOb3Vxm0F2ipPZiN4C96Kb3eekh6nEpe4mHnyxjPrtJkNSb3kVueFOkhag3szuSLJvIspmcapnWieH1A1sLthlsV+kh6oP57EyWJf6S4scSpK5M726f5V0lLURtM4ltmM9ufvRvsU2GzuSY7mY3lUnoAXZ9Gd6hbnj/BlNlM1HDzGZHNzIjw4OtLGV/6W1eJUM/iVaXpvesm95IaSGSwXR6eYWwm8jxJ3LMIssMMjxIhrEtZh5uy/BynOqfr2MuB0rkujW889zwnpAWorpMo5EMP9iygb/4MZHZ7BjJ8OawF1lW+uejJHRdG14vsJVueh+VHqI6zKcHWR5qZmqbfEP/ZP9s4VafZ3iZ+exc1PAW0JMsL/hnd0toATbBDe9n0kJUhywTQ2a2kRzXkWOH97WbwxCyPObtNpPh7FYNz2ggxyT/+bNkVMVKANh+bngrwDQmRIXJcVLI7DaT49Si7SexDVluJct/FV3SFpICvEOWPSS0CJneM256Z0kLUenZ3cwtZpXjVyV9R0uGt4AuZPgFcxkukUUzwzvDDW+2tBCVNLu9t3pml2OnDjM8IVo3vG5gS930PiE9RKWWs18Pze6mlfw9MjwR3/Sud8O7XVqISs3wbgrN8K6R4YkKGt7uvrd2DZgqm4kKkOG+kOGdK8MTFTa9qT7Lu0BaiErM8KaGlrSnyfBEhQ3vJDe8F4K8eUKU1/AeD83wTpHhiQobXiPY6256w6SHKLfh/SFkVGfL8EQVTO9yN7yJ0kKU2/BuDS1pL5fhiSoY3k5gG1TZTFTC8EaHlrSlp9+W4Yn2md4DPsv7obQQ5WMuB4YMbzXT6SXDE1UwvGNU2UxUYJzRQIZ/hMzq+zI8UYWBGK5sdrz0EOUjxwWhWd4q5jBEhieqYHrfDFJG2SBpIcrHNBq3SiCQZSkZRrTafgE9yXA2Wc6U4Qkhao+57EqWl5olAH2WLD8lxzfJ8GWyfJcc94SyFy/GaJDhCSFqj5kMIMuUCOnd88c/t6R5l+GJ0peyA/zZXf6YELHflFCfZvkWbTpYkx+7xjiXpd5nra5L/cz2DvEKY38ny9qtMiFneJ4cd5DlRBbQZUufWWxPlnl+jJeIoh2GtxnskHYa3ozQZ7vFOJfl3me9rku9soCeLKCnhBAVMjwDe67t2rUyPCFEbRvehtB/XyjDE0Kk2fAeAVvk/726uFnJ8IQQtW14D4KdGvr/yTI8IUSaDa8B7KnQz0bI8IQQKTU8APu4v601sNfAesrwhBApNTwA+3Xo59fJ8IQQaTa87UOlHDeCHVCi4b0F9kbEo0mGJ4SoguEB2Hmhz2aDdSrB8Eo5ZHhCiIobXiewOaHPR5VgeDeCXR3xWCvDE0JUyfAAbCjYJv98CVifmIanZ3hCiFoxPAC7OdTmehmeECLNhtfXZ3duRjZYhieESKnhAdhZoXZ/kOEJIdJseA1gT4favi7DE0Kk1PAAbEizjCpVMjzrArZ78N2qsiaEKIvhAdgN1TM82xNskgdC57//HbCr2s7fJ4QQ8Q2vV7PlbIUMz4aALfMQmUlgPwAbB/a297lV11II0cGGB2BfqoLh3eRbz4Y3+/nuHrC8GWwXXU8hRDGT6R7soLBRYMfE6PfVUL8PNPtsONi5fvSK8Z1f8z5nt/J5KzWb7RE3ypG6nkKItJv23W54p0sLIUTaDS/nhnegtBBCpNnsPulm99LW2VyEECJdZtcdbL4b3inSQwiRVrPr7FvcPAWVEEKk0+x6gD3gZneHlrJCiLSa3WCw59zsbtbWMiFEWs3uv8BWgK0DO0d6CCHSanZXhIr8PAA2poXjeOkkhEiD4b0SofjPndJJCJEGw/sw2KA2jv6t9f7/4LAugMY+P9kAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTg6MDA6MjkrMDA6MDA0i1rwAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE4OjAwOjI5KzAwOjAwRdbiTAAAAWd6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAKJF9U9tqwzAMfc9X6AdqdLFk+3FNyxijCWzd/mGwx/0/k1I6p2BmW0FRjmWdI2eCGG+n168f+Bt8miYA/Ge11uBTEHG6QDhwPD+/LDBfn473yLx+LNd3II6FMR+xT9f1co8QzN9woISWCREOnFhrKQqYcBt9M8MMB0yUtVbZ9hQ2LQOk3JCFpFWvIAmpIQ+AGRaPMmYWA0qKVBgHOPWElKyhqrjDrWlpA5wFG06GToHcyVWtjSosnnCjaspRKtZqdXRy3U6WjFk0OHPJpdUBsDkVSg2rSg4ZzQSH4hCGOn44ovNwgFIpWUZIghUOkoiqY6JMsyrD3nij10haHOBJoxDDoeTn5fRwAW5X4rgup34lYnJve3aT3tsc1jsYU3ujyM16P/wblK56dqtdW3JrXUHyzLQXiuNBtBOEtgjveGfPwXt2ey7xfv813J9+AdDWpb9XkvniAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAC+elRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAAAiZHY+7DcMwDERXSWkDNMGP+BGEVO7jIdQamSDDh3JDEIfHu+Nn8pzbee/fmtv72q998nm/fhtjpzSFQ9BdyWEwaqNWCqNESxiCYukGByFlevRckHcyg2J6twdyyggQbGkBg1CoiXoRRhwCo86DtacAobI5La28ibQU44gKHYcic5qsNPfUsIcKzwarqz9G3CzzqUghvrTavPF6o8pGwv77A/yDMnIuDMuSAAAAAElFTkSuQmCC) |
관련 화합물
힐 시스템의 공식은 C6H4Cl2N2O2
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |