몰 질량 of 3C-BZ (C18H23NO3) is 301.3801 g/mol
C18H23NO3 중량과 몰 사이의 변환
다음 물질의 원소 조성 C18H23NO3
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 18 | 71.7342 | 수소 | H | 1.00794 | 23 | 7.6922 | 질소 | N | 14.0067 | 1 | 4.6475 | 산소 | O | 15.9994 | 3 | 15.9261 |
몰질량을 단계별로 계산하기 |
---|
먼저 C18H23NO3에 있는 각 원자의 수를 계산합니다.
C: 18, H: 23, N: 1, O: 3
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, N: 14.0067, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C18H23NO3) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(N) * Weight(N) + Count(O) * Weight(O) =
18 * 12.0107 + 23 * 1.00794 + 1 * 14.0067 + 3 * 15.9994 =
301.3801 g/mol
|
화학 구조 |
---|
![C18H23NO3 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAAT0AAACiCAYAAAAz3Bq/AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYETgMlAUqfAAAAAZiS0dEAP8A/wD/oL2nkwAAGJ1JREFUeNrtnXm8VVXZx7/cCxcZBMwRFQfUTBwy0URerDdTQUtxiDJL03xFTXM2qtcBQYPKzLFCS3FoUhzIqNScek1LVCw1LRxQc3xDRQkU4T79sZ7t3vfcfc8dONy79zq/7+dzPl7Xueey17PW/p291noGECJejgGeBAxYAtwIDAN6AwuBnSp+f4i3byXTCSHKxiQXumNc6EYAPwdOAvq4EI6u+MwHvH1bmU8IUSZWAxYBp7fxvkRPCBEVW7l4fbAd0dvVf05e60j0hBBlYgCwFjDWxWtgO6LX1kuiJ4QoJKsDuwOTgduBd4DzgR1dvIbpSU8IUWbWAyYAFwF/AVZUPKG9B1wFrOHvTWhH9LSnJ4SoHQZNBp8wONxgf4O1O/n5jQ0OmQrnkLqeZF9LgT8AU31Jm13OzgIep+W/2R8Y3AnR6wWMBHbwn4UQok3B2tbgaYPnDG42mGuwxOD4Kp8ZbnCowQz/rBnYgzDfxWgxcC8w3Ze1/apcwlrAPcDbwJ3ArcAbwGGdEL1rgWnADOAKjaoQotoT3tMG1xg0ZdoPNFhh8HGDBoPtDY43uN7glUTkMq+FBrNXwMkER+LeXbickcAXgH2ATTNPcLv7U1+W3t4+ICOCuLg+rpEVQrQlevsYvJO3nDWYY/Bzg81zRO4Vg1sMJhmMNGgoQHeOBR4CxmtkhRBtid4ZFvbg8t470+AJ//k+g6sMvmywRUG70wBs58InhBC5wnauwQNtvHeCwYKSdGWM/7cPQagbNLpCiDxhO97gpTbeO8/g/hJ0oxdwCnATMAc4WCMrhGhL9Lb2PboxFe19DJ6x4GIihBBRCd9VBgsM9jQYZLClwQ0GL1pwJxFCiKhEr4/BFIMX/KlvscEsS91GhBAiKtHrZe7vZjoAEELUgejt6L56V8oaQoh6EL3Jvqy9VNYQQtSD6M110dtb1hBCxC546xk0e4KB/rKIECJ20TvCn/JukTWEEPUgeje66B0tawghYhe8JoO3XPQ2lkWEELGL3h4ueI/IGkKIehC9C1z0zpU1hBD1IHr/cNEbLWsIIWIXvC0zad4bZREhROyid4qL3jWyhhA9cxuOApsEVlEAxj4LNibzc85SzL4ItpNs2HGuhcuWwHyDz8saQvSM6H3da85cVNH+W7DJ/vOdYGfnfHYu2KmyYYcZBLwLLCetIiaE6AHRewxsMdiOEr1VyoSwwuUemUKInhW934GdG2pGW6NEb5Ux00XvazKFED0vegPBXgA7vg3Ruw/svIrXyxK9DtMAvOKiN0LmEKLHRQ/AJoAtAhuaI3p3gZ1Z8XpRotdhdnbBe06mEF2kPyFW+3ZCFbreMslKix6A3Qp2pZa3NWeKi97FMoXoIAOB3YHJLnTv+BxKXk8SynCKlRS9LcCWgC2Q6NWUh3yijpMpRBusAxwIXAjMI5zyZ0VuuQvdU0Czt31fZltp0QOwKe7G0gnRs03Bfgb2a7AjZdcWDPVJugToJ3OIzLyY4CL3YEbIktd73n6h/94amc+OB5b6702RKTsnegeBTato6wd2E9ih/v/ngX0p57OXhn1AADscbBuw3i6Gw2Tb9/kfn5y/kinqmuHAocAM4PEKgTPg38C9wHRf1rb3BTkeWOaf/brM2znh2yMsa2v2934Dtpns+j43+cQ8SqaoO5GbCFxNOMCqFLm3CHt1k13k+rbz9/oBq1e0fSazDD5ZJu+YQPUC+6cvZ7epwd/bFWyO7Po+TT65DdhI5oiWRmAkcAJwHfCvHJF7lVAeYJL/bnu1jgfQ8iBjKXBazu8d5kvjZl9ViHZEagcXvBeCAK7U3/oY2B1ga8quAGxJ2Gg24DGZIyoGAoe7gN0CvJEjci+5AJ7gItfe/bUWsB9wPmEvL+8g46I2PvvVzO8cpOGpLlRnuuj9aCX/zjFgz4Ed5v5+G2o58/5kXeDf/JtovkXBnrR2HzHgCeAy4JAOPtWvR8uDjBVUP8hoL177DP/cMmAfDVPbYvVnF72VNJJ9wsVuQp2IXm9glC832vqmfxmY5TeDAf/wiS7KzVMZcfk5YV9t3Q58bn0Xr44cZOwDDO7CtU3zv/UuMFZD1Vqo1gZbAbYUTLVXq9PHlyjJcubNTixnBgFz/XceBbT8Ly8NwCIfy0914sl/Qc58eZvOHWR0lO9lRHRXDVlL0TvMn/J+I1u0Im8TuXLSPu0TeiKwaQf2ax7zz82jpc+VKA+jfAyfqWhvBLb2uXAd8P858+U10oOMMf5FuiroBVzu/+ab/gUsXPSud9E7VrZgkIvcdF9ivFsxYVf4kmQGwdeqK36I6xA86g24j7AZLsrFVB+/ygOFG3JE7gXgWoKr0lZ0b8hYoy+9zQV4aw0d1gfsDRe9TerQALXeRG7rafEaIOuzOAx41v+N24HVNBdLxTwfu8r9skmZ7Y2JBRGZPv5kaYQMP1vWu+jt5oJXL64Uu/hkTDaRK0N+lrDym8ht7a08C2QPdjb3G8SA2atwmSNqy/o+bxbnfFk1FPSam4Df+Vx7nvouLm/fc9GbHnlHm4A/5Sw9FgFzCOE7o/33ak1/4A/kn9xuQ+rAOgtVRisDE328bi7ZdVfOw6H1KnpPuujFfrpzlA92M/A3wsnqDt0oMoN9mWzAX2l5crs98Lq/dyVKE1R0ZvtYlTGhRrV5WBeCN9wF7/WQICBqZvhA39uD17AWqV/Wn2kZP7kLwXUhb3NcFIe+Pk7NwAYl7UN2Hs4DhtTR+O0+EW6+C56/tA46+xcf5N17+Do2ILi4GPBHwiHH+wNC6hIzVfpSSMb5+DxU8n6sS+pBUDkPo+Y27/QXIu/nMP9mfpvU8bOv73H0BBuROqneRktn1H0pSZoggwEGexl83uCTVh8n0BcTT+66YZl5WBceBAMJcYPL/XE3Zo72gb0h0zaBcFI7rYeuaQtCeJoRUk5ltxcKnybIYD+DhQZPGPza4FmDFw0+FvlcSkLPdo6kP1uQehDcTOT1Ng6g5/e4uovER+nLmbaZ3nZaD17XtsBCv45raOnucBhpmqBCbZgbbG6w1EJRmqSt0eACF8JYN8dHkEZUNETUr21JPQiuJ2IPgp94J78RueD1I8QeNhP8q6BYZRg/Sppn7wpantwWMk2QwTSDR63ilNmgn8GrBrFG9pzm4zEzwr59hDRZRuU8jIJewIvewW0jF729vZ9zM21JGcZnCnKNowmOrkaI/MhSuDRBBr+1cGPkvXebwY8jnUt3+1hMiLR/2Xk4L7bO7UjqmR27T9il3tfJmbYilmHcgzQ32+SK97JpgnqkiprB2hYOWTC429qovmXwS4OfRTiPBvsXzzLidvE4hNRxf/+YOnaWd+oHxE8S37pTpu1hilmGcT9CrK8RYjizdGuaIIP1DCYYXGjwoMEKC06dWxhcZyG2NO9z91mc5QgPcvvfGVm/8vYmk5RZ58fU0QfoWB6wsrMNaU2CZHCrxU0WgS8Skh40A8dUbEmssjRBLmZfNphp8LQLXPb1b4M7DD5icJTBG1YRl2ywicEyi3NeXeO2PyWiPg0lHGBktyMG+NNsM/DBWDq6jt9US+g5P7Xu4uukG7MJR5IG+BeVw0lPbo/ItNcqTVCvvWCEwbEGvzB4KUfk3nRXlEkGu1gmGYJBf3dV+b2Fv9PXYEeDhwzusbhONpOnoVfd7jFlKMkrSbo/qcNyNBzunfp1HSxt/8/7emCm7WZvm1jwaz+e9OT2c5n2rqQJapXYcgAs9qeyROReNbjFRW6MtZPxxWCowU8t/B3zJ78fWshHGBujSZPFxkReSdIfe9s3Y+roLO/UMZEL3gcI+2PLSJdhfQnuIc20TPFUVJK912UVWxHtpQlajbDv97/+e0lMb/b1/HNwkcFEC4ktV2ZpPCCnbV2Dyy2O8KZz3WYXRHR/JPdCtiRpL+Cf3vbhGB7PtyVkFkliOzeJXPQOJg2vSRhL+Y7jp5Pm+ftEpj2bJmg+YaN9KnAP+Sntn/Rv8UO7Y+zddcX8v31LPpcecRvuEdH9sWfOvTCSNNNz6bw6qhUcfouwp3dq5KL3U+/viZm2iyhfMH8vwil7cnI7JvPeEL8hl5NftyNJad/txcU9aiPZK5xt5U2Qmj346hvR/XGhz5NzMm1netsPy9CB1Qgxj2cQAtjzljMLCMVrriA9HTwqUsFrzAj9Fpn2+d42qoRP6ldlxjGb6DTZo/0X8F2CA3Mhig0ZbGPwLxe+WVbO8KYkD+ONkd0jyb2wS6btz9726SJe8AD/xp9Exyp0Da/4/LGkRW4OjlD0xnj/nsq0bUUaN1nGm6/Rl6c7VbRf6f36WhEv2mB7g9dd+GaW8GT3V27fIyK6Pz6U+aJM7oXEq2MpFV4d+5Of7ufzFcuottgE+Dbh9O0GwmFCRx77V6d6ha7K5UxHKnSdSHo6GFtYTRLBkHWuPNXbroqonw2kmVoKW+XKXV7eduG7uET2XY00bnuDiOZNci9cnWk7zNvmVP7yZOCunD/yPVr6uuSRBJb/npDq6GTC5nLeidC6vkyZTn6FruW0rNDV1awW55CGN+0V0aD+1fv1yUzbXd722Yj6+VHv03NFv1DPt7fUhe+ckth3L7fvg5E9FCT3QtYV6npv+0otRe9hgm9c9vF+iD/FrQF8ibDfNj/nKW6J/7tn+41cSzeA75Jukn88ggEdRlrwJ9n7SuIm3yOuuMmzva+XlOFiDfbN+AaWIbvPJW7fsyOaM4Ny7oU+pBlWNqmV6K1B9VTlIypEbjFhr26yf2ZVhkv1An6UEYqdSj6oXyGtLJbwWW+7K7Jv7KTAS2me0g0ONFjuwlf0kK4kbvujEc2Z5F64O9O2m7c9mveByYSkj7dWvBa0I3o7+B/duIrwXEPYZxtJ92+0N5C6eLxByK1VVuZ4Pw7PtCUnnzG56Qwl7DWVLpzQ4AiD5m8Gn8LDC3qZW9M6bhtCxvHLgbVLOm+Se+G0ioc2I2yn5Yreo4QDjexrdjui92H/o8MLbIxGgk9fMtAfKuGAJglDV5DWls3GTW5FPBxB67jJ0jAlZLFupnWYXU+SOPEfR5qJp9K+SfLdh0u4VZJNnpu9F5ICQbu2JXpdWd4O8j+6d8GN0gT8htQre9OSDeqn/dofyLSNolgJQ2vFjbSOmywbp9OzCVIrY5KzTvzJqucNWibaXZtQN9kIxeNXL5G98+6F4d72Om3Ux+iq6EEIfr+D4hfe6E+aIfYp0hTrZeCHft1nZdqmEl8t2SbSuMmNS96Xb9F9CVKTmOTTCdtSeU78zxG2mo4iHDzmrXw2dOEwv6f7lcTWefdC4rrWZuLXjoje2oTj39/6K3En2YaQDugBgiPpcf7t8pUCGmcQac69JwkuNGVggV9zNtfcPG8bG5Ho7eF9eiSS/pxH6kFQy2pqnXXi37oTK5/NSEsu3Eo5QtQezrkXbqedMrDjyC96Mp6Qmwpg88zj8Jm03Khdl5Cy5VrCZuiJFHdDdEjGSI9QkNCmKmzn1/oyabB00ROGdpULvK/nRtKfXsBlpB4EO3bx73TWib8jMcnVVj4fJN0ju7Hgq7i8e6GmZWAHEzLg3lTy5cc6wBM+qPe7kYrKN/w6s1lgJ5LW84yJxJdzdER96kqC1O5y4q+28tmOtIzn1RQ3zO7InHuhpmVgBxNC0+ZQvuD2Sir3L4r6xHQvrYuZHOffxBMjEockbnIh8dUn7UMa6/oqrROkru/iNQN43J9csiK3zEVuuovh4G5a+Ywi3WO9tKC2TZLnZmso16wMbO/MZDyIOLy5s/sXvyvQ/sWavrVwiX+rv0fr07QGWmYlKTun0DpuMiaaCHvhyVbFzf56IWep+pb/7jcJe3erel5WW/nsRrpnWLTCSH0JhzbZ5Lk1LQM7mrD5eTohz/z2kUzGLTP7Fzf00P7FelWWM0kFpzOImztpHTcZGwNcVN6rELlFhI33SS5yPfFlVm3lsydpGc8izcNxpL6FCTUvAzuYEIWxemST8cMEf56kyvuq3r/YjJD9oSMxyWdlbpLTIhWDQYTN+eWEdPgxMwz4JSEU7GLCHl9RsvlWW/nsX8B5eLFfz5RMWz2VgV1pRpH6N9U60H044VRtBmncY/b1NtVjkg8l7gSpE2gdNymKt/Ip2jx8yq9z50xbvZSBrRnZ/YuuFgRuVaErR+QqlzMdyT2YJBxYQRXfo5IyM/In2ZhWPkWZh0kyk9cy11dPZWBrytjM/kVHysX1pmXdjtdzRO5lf+8E/92uLp9jTJCajZscoelXipVPEebhfn592eS59VQGtuYcUGX/oj8tveGX5IjcSy5yed7wK0sScvMuxY957gg7k9bIEOVZ+RRhHjbRMgiiXsrArjK+RHqK+gDBvSDv5G0FIUPNJYSTx6HdcG3fIT3wKHuC1Cnel4s15Uq38inSPOwDvEl9lIFdpVyR8xS3nOBAOsMf7dfqgeuKKUHqQ96PcZpupVj5nFrQeXg8aTieWEm+BTxGKEA9luKErMWQIDVJGBpbDHHMK59mWkYCNRBi7ntiHq4J7EtIhJKI8v0aqripTJBatmSiSdzkbA1lKWirxGp2Hr62CudhezHJi4krblu0QRNpKvmyJUhN4iYnahhLw0mk2zyfybT3JaSiSmpS1MLBv6Mxyd8lRIoN1fDUD/0oXoLUxJVnEqEe8qyK9/sSYkyzcZOiHJxLfonV/oRUVCO7+Hfbc+LvzsJiogRk0wT9ne5PkLo6Yc/zHEI27XdyJmzWu3+st8/T0JWSbInVriRIrXTif432nfibZHZRSXcmSG0vseUK0lPuQwkxp1ku8t+bqmErJb18bDt6ctudTvyizliHtMBLLROkVssEY4TTs2xiy/YSBySJFkZpyEpLA6EGRXJyO6piqduTTvyizqhFgtRaJ7ZsJKT9OYmQK+5dQhhRbw1XqWkkuIwkT/d/9S2LZRXzpZlwwHEpIR/n+jKdqDWdTZC6splgOrucSTLyfltDVXr60jqxRhGc+EUd0pEEqZ8mPxPMa4STuBMJORTbS+He2eXMkRQzMaXo+rbKeYT93WOIL+emKBHZNEFX0XpzeHu6tomcHGRMdpF7h+oVuvIKSRUxMaUQIgKqpQlq8KVte3SkQldXljOHkIY3Ha2hEkLUis4mSE0OMi50kas8yEhOa5ODjCErcW0xJ0gVQvQg2TRBkyveyx5kPEO+N/y9LnKrwhs+xgSpQogCkE0T9Cwwl5CsoFLkFhISAZxMcDztDteSJLdeLAlShRAF4Qc5IvcKIUZ2Ej3rDZ9NTPnfGiohRK2YSKg1ezmwRYGuqxdwGWD7wH1W7gSpQgjRIRo+A+cbLDZYaLCdTCKEiBqDRoPrDMzgNStfglQhhOi08DUZzHHhe8HKlSBVCCG6JHz9DO524XvKFKguhKgD4Rtk8IAL39+t+xOkCiFEtwvfEIOHXfgesfbz9QkhROmFb22Dv7nw3W/K5CGEqAPh29DgGRe+O0zFYYQQdSB8mxm8aPCewSdlESFEPQjfCIPxOe0DrP3U9UIIUXoR3MfgUV/2vmfwT4OTLYS1CSFEVIK3h8G7LnKDDVYzOMDgdQuV74UQIirR+6PBlTntxxi8ZTBAVhJCxCJ4/QyWW8gTWPneUF/ujpGlhBCxiN56Lmyjct5rMFhhsJ8sJYSIRfQGGjRbKGVZ+d6aLoi7yVJCiJiE73GDaTnt+xksU8iaECI20ZtosMhgl0zbMBfDn8hCQojYRK+XwTSDpQYPGdzrWZdnGQyUhYQQsYrfugafMhhvsLksIoSIWfDONzjPYENZQwgRu+A1uROyGWwkiwghYhe9PZPkorKGEKIeRO9CF71zZA0hRD2I3nwXvV1kDSFE7IL3IRe8hQaNsogQInbRO8VF72pZQwhRD6J3p4ve52QNIUTsgjfIk4cuV3ytECJ6lsCB/pR3j6whhKgHrhgITxwHR8sUQojYaQBeCatcRsgcQojY2dkF7xmZQghRD0xx0btYphBC1AMPu+iNkymEELEzFGgGFgOryRxCiNg50p/yZssUQoh64GYXvYkyhRAidvoCb/nyVlmShRDRsy2wEJgnUwgh6oVGYJjMIISIeUl7FvAo8DrwGHAKISpjN2Buzmf2Be6S6YQQZWQ2IeTsC4SQswOA+YSojPHAmzmfOQR4XqYTQpSNMYST2v+qaG/w/0r0hBBRcSLV42slekKIqPg+1fPljfcnwTcrXv+W6AkhysjZVHdPGQ8sAtaveH1VoieEKCOHEGJsB2t5K4SoBz4AvAFcQnp4ATCwk6LXCGwFrCGTCiGKzjgXtseBmQQXlreAjTsoemsAtwEXAH8C9pZJhRBFZw3gIOAk4GBgI2/fADgw5/c3ITgoA/QhjdP9FPAdmVMIUQ98B7gX2FSmEELUA+sD3wDOkSmEEDHTBGzmP28PXC+TCCFiZk3gF8CNwB3ATjJJffMfbFM9APbbOtQAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTc6NTY6MTIrMDA6MDDjOgDZAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE3OjU2OjEyKzAwOjAwkme4ZQAAAhh6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19VFtuGzEM/PcpdIEIfEv8jO2gCIqsgdbtHfrf+6OkDFcKIERrESthRHFnhj6VHD+u3//8Lf8HXU+nUuCLn7uX3wwAp4+SL+X89u39KJf76/m5c7n9Ou4/C1EhjjPxfMa+3m8fzx0sl/LSKnbr5OUFKmoXlQIVxphnKZFaG/WukbaiC6JtgFyOBDIoxTZWYwbRDVAyo1Rz0VjF3d2JhDdITSRXYtOoLZDKbm2HtERS7UgOWDKlk7YNsCUQK6sEIKokxU47YC+3vNEZqQWjUS60bUaPjFEZWQMpXEGYtwkR8mqoTGBAyaSpWN8hMe7Gity4pSRRIvAWmOJQxYbmbfBjnQl3SA4kV6PBXyAJtSnskClPqGPsboMqIMQtMuWxioQeDCVX4iHQDmkDqaJG6Qjpzr5NmfJofDDGrUFB1Nhkm7GPKkGDbEsZibFtgf5gvYmQan4PNRbbcUTwMBFBZkuokQHTDpoKBYkOEArGGVbvW+KJHvcjs3ZNNzfve+bfjuunHn107fl2XGfX5kOzNWNReDZgLmW2GcbU2UuxKDYbRmK22RYYs0/zY0yfFpdErFbGEXCxLI5AizdxBF48KBlQFq9JBtTFU7kMxyzekQzYFpNIBuyLG2TU44vskoFWdXHs4CIiZiBaxJJMNmumrDmO6irSKkmun3/C8X76BzCXFkEKOnEuAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAEXelRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAABiVJZBNssMgDIOv8pbJDPXY8g94ssy+PQTX6OGfnbICIT5L3J8t+/jcG7sXzj6cex/3fdzn+9zy9z2YHDHZhhKbqo7rxZQqmBigSJ5RkpC6JYYQXNbPpOBgDCYJt1jjEhKdOkspD2spIJkyR5k9lkLGpRTIeCSITx+XUYSNnsCQcgQJJB9HWrpmS24eWmBb2YLXBNFKU4Qfg72zVzyorCfeNIN7gzHVqkRNTOYK+kK1yYXHJqq+yqY0czWrbsGF6ZeB4C6rBI2GVRGt+K1V7jTX1lYC1prTxCpaYdNE+ucmyarubRNf5vbYlL0/M7Q2z8glyNGkhM9xfv8B8Pxaq99yIiUAAAAASUVORK5CYII=) |
관련 화합물
힐 시스템의 공식은 C18H23NO3
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |