몰 질량 of 16-O-Methylcafestol (C21H30O3) is 330.4611 g/mol
C21H30O3 중량과 몰 사이의 변환
다음 물질의 원소 조성 C21H30O3
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
탄소 | C | 12.0107 | 21 | 76.3251 | 수소 | H | 1.00794 | 30 | 9.1503 | 산소 | O | 15.9994 | 3 | 14.5246 |
몰질량을 단계별로 계산하기 |
---|
먼저 C21H30O3에 있는 각 원자의 수를 계산합니다.
C: 21, H: 30, O: 3
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
C: 12.0107, H: 1.00794, O: 15.9994
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 (C21H30O3) = ∑ Counti * Weighti =
Count(C) * Weight(C) + Count(H) * Weight(H) + Count(O) * Weight(O) =
21 * 12.0107 + 30 * 1.00794 + 3 * 15.9994 =
330.4611 g/mol
|
화학 구조 |
---|
![C21H30O3 - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAABxCAYAAABItB8AAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEgwwAgYbVQAAAAZiS0dEAP8A/wD/oL2nkwAAHj1JREFUGBnswQmY1gWhN9AzwzqCIouiiEu4i5RKVirXtMwlw7JCrQhTP7nRIvdWyrVIKa9FuxCVW5bYolY3DbUFLU0wNVwRUVRMUxBBUUEQmJnfZ8/UA8MAsczM+74z/3MUCoX1qkIf7I1TcQEGKBQKFa8DumjbajAAQzAUIzAa4zABkzEVszAPqxAEQVCHjykUChXpDDyIIJiDMzTYDy/hUE2djpdQpfV1xU54I47EBzEKY/EdTMaNuBOP4SUEQRAEQRAEQRAEwSI8imfxGoIlqFEoFCrKl1GP7+FoHITPYykOxCAEh2tqFIJqLWMApuFv+APuwd+wFEEQBEEQBEEQBEEtFuBh3I7r8EN8DZ/DaTgBh2EfbIdqjfXAAgTfVigUKsauqMXFmuqtwSAEh2tqFIJqza8rliMIgiAIghcxC9MwBZMxAeMwEkMxBAPRDx00jwOxAnU4QqFQqAifQrCn9RuE4HBNjUJQrfldgGAVvo8T8Wbsiu5K7zwET2IbhUKh7F2EFai2foMQ/BDn4Tych/MwBUG15lWFmQi+ojx1xF0ILlMoFMrexXjBhg1CMA3X43pcj+vxAIJqzev9CJ5GZ+VrHyxDcLxCoVDWLkSwlfUbhOBwTY1CUK15/RXBJ5S//0YwD70VCu1EDfphIIZgGEZjHCZgMqZgJmqxFF9TWu9F8E7rNwjB4ZoahaBa8zkWwXOoUf6q8ScEP1coVKAa9MNgDMUIjMY4TMBkTMUszMNKBEEQBEEQBEEQBMHxSqcz5uJ+9NJYLw0GIThcU6MQVFttexyAbjbPnxF8TuXYDa8gOFmhUGJ74SychZH4PL6FH2MK7sCjeAFBEARBEARBEARBsBiP4U7ciMn4DsZiFD6II3AQDsQcBPejk9IZjAVYhB/jO5iK19AbgxAcrqlRCKo1+DSm4WLMwf42zdsRvICtVZYzESzCjgqFEjkZryEIgiAIgiAIguWYhxmYgsmYgHEYjREYisHoh8423TZ4DMF5SmtbfBKX4XKMxRs16IuvYDdNvQVfQZUGR6OTBufhizbNHxCcpzLdgOD3qFIolMB8BCvwIC7FhfgMTsV7cAj2Qm+t6zDUYRUO1nqGYVstY3scjVtxkI13EOrxCnqqTDtiEYIzFAqtbD/Uow5vVJ6+g+BhdNXyqnE5FuIr2F7zOhQT8Gfsa+Ndh2C8ynYKgiXYXaHQin6OYILy1QUPIfi61rMrJmERLsJ2mtepuMLG2Q91WI4dVb5rENyOaoVCK9gdq7ASuypvB2El6vB2LaunxnbAeGxvy30eb0AVLsLXbZyfIZiobeiN+QhGKxRawQ8RXKYyfBnBXGytZfTHIkzEzprfwbgOt2Mitvbv7Y5VWIldtR3vQbAcAxUKLWhnrEAt9lQZOuJuBN/XcvpiPBbhcuyqtC5HcLm254cI7kEnhUIL+S6Cn6os+2I56nGcltUT5+NgpdMfK1CLvbQ93fE4grEKhRbQF8tQj0EqzzkInkUvzedIXIG9lI+JCH6m7RqCOqzCmxUKzexrCH6tMlXjNgRXaT7bYiwW4Grsr7S2x6uoxyBt20UIZqGrQqGZ9MBLCA5Wud6AVxB8UPPqhs/gJKU1HsF12r6ueAjBeIVCMzkfwe9VvlEIFqKvLfM2HKB89MBLCA7RPgzGStThcIXCFuqGhQgOV/mqcBOC622Zk/B33IBDlN55CH6vfflfBE+gu/JyHB5HL019EVMVysrZCO7QduyEFxGMsGU640yco7S6YSGCw7UvHfFXBJOUl5MQbKepiZijUDa64lkEx2pbPorgJexi0/VSXj6H4A7t035Yjnocq3ychGA7TU3EHIWy8UkE96JK2/MLBDejyqa5EbfhGKXXBc8iOFb79T8InkFPretd6KnBmfiyBich2E5TEzFHoSx0wpMITtQ29cFzCD5h03TAh/EDpfdJBPehSvtVjT8juFLz64edNdgJv7DadAzR4HRcocFJCM7GKIzCKIzCnzBHoSychuBhVGu7TkDwKvZSeTrhSQTvVxiAJQg+aNN1QB+rfQ39NRiDr2vQBy9Y7Xq8V4P34jcanITgLkzHdEzHdMzDHIWS64BHEHxE2zcZwR3oYMO64AZ8ANVK7zQED6Na4R8+iWAh+vr3jsaRGuyL2Va7A4dqcAZ+qEEHrEIHDa7AGRochukanIRgO01NxByFkjsFwRPoqO3rgacQjLFhVRiKX6Oz0uqARxAMV/iXKtyM4EsabI/3W+1B7KXB/2C8BttjodWm4AQN3ofrrPYC+mjwdZyjwT54VIOTEGynqYmYo1BSVbgXwZnaj3eiHq/hjSrDyQieQEeFNY1GPZaiM7bGflZ7G7prsAcGadARH7HasdhDgwH4kNXOwbYavBvHa7AtvqvBSQi209REzFEoqRMQ/B1dtC/fQ3AfOmuqO0agk9Krwj0IRiqsqQoPIgjepHROQrCdpiZijkJJTUcwWvuzFeYguEBTu+G36K/0hiKYh64Ka3ofglcRfFTpDMal6K6pk3GBQskchWARumufDkEtVuGtytd0BP+lsLa7EUxB8E2Fwjr8CcG52revIXgENRp0R43S2hpvwCcQLEJ3hTUdjeA5fADBVIXCWt6G4CVsq33rggcQXKTBR3Ck5lODfhiIozACozEOEzAZUzANT+A1BEHwEq5UWNttCM7BLgieVyis5UYEFyj8wwFYgTocaf06YHvsiyF4L07HOfgGrsD1mIbZeB51CIIgCIIgCIIgCF7Bk3gZwXPoo/AvhyB4CT00eBHBjgqFf3oT6rEU2yn8y1gECzAJV+IG/AVzsBhBEARBEARBEARB8CLm4C+4AVfi2/gC/hMfwBEYhH7orMGemI/fI/i1wr/8FsE4q92G4BiFwj/9AsG3FNbUEfPwFIIgCIIgWI55mIEpmIwJGIfRGIGjMBD90Mnm+wuuQH8sRvAhhQNQj6XoY7WJCM5RKLxuH9ThNeyksKZ9UYeVGIdT8R4cgr3QS+s6A4uxjwanI1iM/tq3XyH4usbOQPBThcLrrkTwA4W1XYXge0pvKzyEaRr7FYI/oEr7tC/qsBz9NPZmBDMV2r1dsBIr8QaFNQ3AKqzEbkrvMtTjPI1thwUIztQ+XYVgkqZqUItV6KrQrv0AwY8V1nYJgiuU3iA8g6fQW1MnIliKPbQvA7AKK7GbdZuN4ECFdqcrjsX38QrqsI/CmnbEctRib6U3DcHvrN/PEUxDB+3HpQiusH5XI/iYQruwPUbgWryMIFiGevyHwpq+g+BqpfdpLMNKjLB+2+LvCD6jfeiP11CLva3fuQi+rdAmdcBh+AruRxAE9bgHF+AyBHOxtcI/9MYS1OMgpbUNZiN4BF1s2LtQj9ewv7bvIgRX27DjEdyi0Gb0wjBcgvkIguBVTMVo9LdaR9yN4GKFf7gQwW+U3lUIgmtsnEsR3INO2q7eWIJ6HGTD+iNYpFC5whvvYDRuRy2CIHgMF+Fd6GL99sUy1OPd2rceWIzgUKV1EOYjWIIhNk43PIbgPG3XVxD8xsZZiGAnhcoQasJRYUJ4KqSW2ipeQC2mYQwG2zSfQ/Asemm/xiK4WWlV404Ewb2osvEOQy1W4WBtTw8sRnCojfNHBO9WJsIeYWgYGvbQVoQdwwVhavhL+EUYHjr4N8Ju4ZPhprAsJCQkzA8/HMp7sLXNV41bEfxE+9QNzyM4UmmdjeUIgu/adN9G8DBqtC1jEdxs430HwblKLOwU/hQSXgwvhoQ/hp1UsnBAWBQeDl8No8MVYXmYEjpaQ+gQBodxYUaoDwkJCbPC+DAkVNt0HTAGkzT2BryCYJj25zMI7lRavfAogmABBth0XTATwTe0Hd3wPIIjbbzTEPxcCYWaMCvMCm/0T+FN4ZEwK3RViUJ1mBXuCDXWEN4easN/eV34cLgmLA4JCQkvhWvDx8L2ttyeWIbgeI19HMFC7KD96IJnEByvtH6FIAhus/kOwkrU4e3ahs8guNOmOQjBw0oonB7qw0BrCQeEhNNUonBYSDjGOoRfh4e8LvwxJCQ8ESaEo0Jnze+/EcxDb6tV4SYEv9F+fBzB/ahSOkPwPIKgHmNsmS8hmIutVbYueAbB8TZNF6xELbZSIuHq8Kj1CI+Fn6lE4dMhYUfrEM4P9aFrODF8KgzQ8qrxJwQ/11g/vIDgY9q+DngMwTClU427EATBXGxry3TE3Qh+oLJ9HMH9qLLpHkLwZiUSpoffW49wc5imEoWxoT50sA7hP0NCX61vN7yM4GSNfQTBy9hF2zYCwSOoVjrnYwWCILhB89gXy1GP41SmDngMwTCb56cITlciYVq42XqEW8KfVaIwOiT0tQ7hvFAfapTGmQgWo7/GrkVwC6q0TdV4CMGpSqcvnkAQBCswTPM5G8Gz6KXyjEDwCKptnjEIJmhFoU842uvCz8Oj1iM8Fn6qEoUjQsIR1iFcEx5RWjcg+D2qrNYH8xF8Stv0QQRPobPSmYIgCIJZ6Kj5VONWBD9RWarxEIJTbb5jEdyqFYTB4ZLwalgStglnhPqwr7WEQSHhVJUodAhzw+9CB2sI+4fXwrlKa0csQnCGxk5A8Cr20vbMQDBK6RyDFxAEQXCV5vcGvIJgmMrxQQRPobPNtyOCxajSAkL38PFwf0hIqAtTwm6hJjwS7gtv8E9hQHgwzApdvC5spdKEI8KycEs4MxwfxoaFYXroovROQbAUu2vsxwj+gg7ajncjmI8apdER9yAIguBlHKxlfBzBQuygMsxAMMqWW4BgZ80o7B3GhxdDQsKCMD68wRrCbuGukDA3zA0Jd4RdvC50D7PChNBRJQn7h5+EJ8LzYUY4N9QoH1cjuB3VVuuBpxCcq+24HcFnlc5XsQpBEAR3azlVuAnB9crfuxHMR40tdzOC99hCoXMYFqaG+pCQMCOMDDXWI1SFg8LwMDwcGKr8UxgaVoWEm8P2Cs2qN+Yh+C+NvQP1WIE3qnxHIFiE7kpnDGajDkEQfEvL6ocXEJyqvN2O4LOax7cQfMFmCjuFcWFBSEh4OVwS3qiZhMPDvJDwTDhMJQl3hvtCH+XpaNRjOQZq7LsI7kdnlW0qgrFKrwvOxSyswnz01/KGI3gJuyhPH0fwArbWPEYguNamqcZ7Ps/3Q11ISLgvjAzdtYCwfbg5JKwKY1SK8GJI6Kl8XY7gHnSy2lZ4FMGFKtdbELyMnspHZ5yDyVrPtQhuQZXS6YE98Fa8Gx/F/2E5ghs1nwMQPGLj9MUYzEVqWFbHgnBtOEorCB3D+FAfEn4deih34dWQsJXy1R2PIxirsUNQizoMUZmuR/AVrWs/7KypDhiMnlpfH8xH8CnNowb9MBhDMQKjMQ4TMBlTMAPzsAJBEARBEKzEbppPZ6xAHbpZv7fj51iBIHgMnzuR3kognBAWh4RHw/7KWagNCR2UtyGowyq8WWNfRfA4uqssA1GHV7G91jUbkzTVG8EpSuMEBK9iL6t1wg4YiMNxIv4fzsU38SP8BtPxCBYiCIIgCIIgCIIgCF7G47gLN+Eq3IGp2FPzexDBWzS2DUbiAQRBHaZiGDoosbBXeDAkLPkrH1COQqeQsEpluAjBLHS1Wmc8gGCCynI1gou0vtmYpKneCE5ROj9G8BKexMsIgiAIgiAIgiAI6rEQj2A6foMf4Zs4F/8PJ+JwDMQO6KT1XYXgTA32xQQsQRDMx3jsqsyEruHyRbzYkWdwCTorJ6F7SFiiMnTFQwi+prE3YQXqcYzKsDtqsRK7aH2zMUlTvRGconR64ErUIwiC5XgC0zAFkzEB4zAawzAEA9EPHVWGzyH4LaYiCIJpGIZOytzBfAyvIfgL+isXoU9IWKRyHISVqMPhGvsCgr+jp/J3BYJLlcZsTNJUbwSnKK3d8BCC5Thd2zUO9QiCF/Ed7K3yHIS5CBbiGOUg7BQSnlFZLkDwBLpbrSPuRHCF8rYzVqAWeyqN2XgWt+JW3IpbMQ3BKUpnJ1SjCyYgCCZjK23HtrgSwSo8jdNQo7L1xm8R1GM8qpVS2D0kPKGydMRfEXxPY7tjCYL3K1+TEPxE6czGn3EWzsJZOAv/g+AUpTMaVVYbjqUI7sPuKt9ReBrBMozBvdhb21CFMahFcCN6KZWwX0iYpfLsh+Wox3EaOwvB89heeanBAViGeuyvdGZjkqZ6IzhFedkXDyN4GR9QmWowHnUI/oK9NfgoZqNK23EknkPwNN6qFMJBIeFelWkMgmfQ02pV+B2CX2s5NeiHgRiCoRiJcZiAyZiCaZiFeQiCl3C30pqNSZrqjeAUra8PdrN+W+NaBPWYgE4qx9vwKIKVGIcOVqvG0/istmUX3IVgOd5ttYPxXfwBN2IcemtwGH6KGk2dhq/aWOGQkHCHylSN2xBM1lh/LEbwIf9eT+yJt+F4jMB/439xMX6FWzET87ACQRAEQRAEQRAEwXK8jHosxe5KZzYmaao3glO0vmPwYxtWhdFYieBW7KC8dcI41CKYiQOt25fwLPpqW7pgAp5CHw3OQj3uxHh8GbPxd/TCcAQ9NHUxZtpY4ciQ8CeVaw8sRXC8xk5H8AouxNfxQ1yH2/EwFqAWQRAEQRAEQRAEwRL8DTPwO/wUE3E+PoUP4WgciF3QDV0wD79EMB0dlMZsTNJUbwSnKG//gXkInsFhytMg3ItgFcajs/XbCk/gRm1TLw0GYhUu01gXnKDBcAQ9NHUxZtpY4diQ8FuVbRQmoEZTT2I+giAIgiAIlmMeZmEarsUEjMNojMBQDMEAdLF5JuIe9MDTCD6nNN6GvTTVEe9EX63rPehg02yHmxGswhhUKQ8dMQYrEDyBITbOFViCj2q7xuM17GD9hiPooamLMdPGCu8LCddpm0YgWIHLMAZn4H34D+yHvuiodeyJ5zFSg6NQj9cwSPvWC7fjPJuuI8ahHsGv0UNp7Y7bEdTjEnSz8XbCM3gYPbRNv8MsGzYcwdsxGIMxGIPxS8y0sY7mfcO45wwu0vYMwqsITlce/ojHUWO1ixHci84KnWy+E7AYwaPYX+urwkgsRfA3vMPmuRHBz7RNd+AWGzYcQS1qUYta1KIeM22CEQiu1LZsjdkILlMeTsdS/FJj3TAHwZe0T+/HLprHnngAwTKcpvXsilsQBNeip833FryARXiXtudmPGDDhiPooamLMdMmGIngEm1HFX6J4AHUKL2tMBOv4ihNHYparMJbtD9jsRBHaR5dcTmC4BJ01rKG4UUEz+G9msftCO5HV23LRCxBV+s3HEEPTV2MmTbBpxFM1Hacg2AxdlceLkM97keVdfsGgtmo0f5si66a1wgsQzADu2l+fXEdguBa9NF8PozlqMN3tS2HIjjb+g1H0ENTF2OmTXA2gm9oGw7FStTjROVhEJ5BcLH164IHEXxL+3AETka1lnMQ5iJYiGM0n2FYiGAxRmp+VbgHwbN4k7ZlEupwCYbieJyPazQYjqCHpi7GTKt9AH/FDExAtbWMRXCBytcXzyK4UPm4HcEi7GPDDsRK1OEIbd9hmIZH0E/L6Y2bENRjPKptvm1xCYLgd9hJy/ki6hDciWptRxU+hj/jOTyFP2IkqnA8HkB3TY3FLzWoxrewFarxJxxjLRcgGKuydcRtCP6IDsrDp7EMwTQb53wET2Jr7cPbUKVlVWEMahHciF423TF4BsGrGI0qLWsrPIJgBc5X2JBt8AAGWcs3EJytsn0TwXzsqDxsg9kIgvNsnI64C8Gl2qa+uAi7aH1H4jkET+OtNs7WuAT1CKZjD63ncgTBk9hFYV0+gbn4CaqtZSKCT6tcJ6AeKzFE+ZiMIHgKvW28fbAMwfHanp74KhbhMlRrXf1xB4LXMNqGHYrHECzHGFRrXf3wFILgFoX1qcIv8BFruRTBSJVpT7yEYLTycRDmIwh+a9N9BsE89NI29cRJSqMjxiMIrkI3jXXFeNQhuBv7KJ3fIAhexSiFNQ2x2vcw2lquRDBCU4eik/JVg3sRXKN8VOFOBMFKDLfpqvEnBD/TdlyJD6JaefgwliJ4GPtr8FbMRrAK49FJaR2IRQiCx9FH4R864TLcit9iOnpbyzUITtZYP9TiRUzGUahSXn6E4FFso3ycjWUIgtnobPPshlcQnKTyVeF4TMdsnKw87IOHENThMdQhmIXBysftCILglwprqkEv63Edgvdq7C2YiSAIHseXsbfSG4VgKQYqH73wKIIguNqWGYlgEXbQdhyJ05WPrTETQRD8FF2Ul5OwDEGwGCcqbJTfITjWug3EOMxFEASzMAY7an0HYBmCjyovv0QQBEswxJa7EcEUlevLmICdla9q/Ag3YpTyVIUZCILgQXRT+LfuR3CBDavGEEzAQgRBHaZhJLbW8npiLoKJyssQPI8gCO7VPPrhBQSnq0x9MR6LcBl2V9hc56IWQVCPHyr8W7ciCB7HOOxhw7pgKCbjVQTBckzBMHTS/KpxE4I70Vn5qMZdCIIgmKj5fAjBy9hV5ahCldV64nwMV9hcXTEbQRAswKEKG7QT7scKBEE9/oz/RC8bti1GYCrqEQQv4hIMQZXmcT6CF7Cb8nI+ViAIggUYoHldg+DPqFYZjsK9+ACqFZrLxQiCIJiBTgr/VgcMwSV4BUFQi6kYgW42rD9G4x4EQfAUxmNvm++dqEUdjlFe+mIOgiAIbtP8emM+grNUjqNwBx7HSHRU2FLb4ykEQVCLrytskhoMwxSsRBC8hMkYio42bCDGYS6CIJiFMdjBxtsZCxGMVX6mIAiCoB5naxlDESzHQOWtq8begVvwToXmcD2CIAiext4Km6UXRmIa6hEEz2IChtiwagzBBCxCENRhGkZia+vXCdMR3Ihq5eUYvIAgCIK56KHlXIFgBjopTzX4Oy5Cf4WW8CYsQhAEwe2oUtgiu2IMHkUQBLMwDrvbsK4YhuuwAkGwFIdZt+8heAp9lJ+RmI06BEFwg5a1Df6G4AvK13YYh+cxGXsrNLdbEQRBsByfVWJhm3BW+Gn4dZgU3mENYWC4OPSxlnBCGK8MDMR4PIcgCGZgNLazYdtiBKZiCbpr6kMIXsObla8uOBezUIsV+KCW9w7UYRUGK2+9MA7z0VehOb0fSxEEQfAkdlIiYe/w9/BsuCxcGG4KdeHSUOV14biQMMBawoVhnjLSAUdhMpYgCFZgCkagmw3rqan9sRTBmSpDZ4zBNHTUOiYgmIWuSqsbdsGBOBofwqfQwWqdFVrC3QiCIAimKIFQFe4N94VtrCEMCwmnel04LiQMsJZwYZinTNVgGKZgJYLgJUzGUHT073XHwwh+onz0wfbWbSf00Pq6YhaCr2o+NeiHgRiCYRiNcZiAyZiCaZiFxQiCIAiC7RRa2jmoQxAEwXJcgTMxDMNwLI7CYRiMN2EABqDnIHqGTrZAODQkHGcdws3hLq8Lx4WEAdYSLgzzVIDeGIlpqEcQPIMJGGLdqnAtggexlfLxK/zRui3Al5XGYKxEPT6usSr0wd44FEPxMXwWX8Fl+D/chocwHysRBEEQBEEQBEEQvIqncR+m4ueYhN4KLa0rnkMQBEEQBEEQBEEQBEHewqMhIeG18GJYFJ4IT4T7woxwe5gafhuuDdeGS8PAMDok9LUO4athVegYjgsJ7wh7hj3DnmHP8P0wT4XZFWMwB0EQzMI4DLDauQhewT7Ky6/wR+u2AF9WOjcgqMMreBQLUY8gCIIgCIIgCILgZczFXbgJV+EifBGfwMl4B96E/qhRKLXjcQ7G4AKMx3dwCS7DtbgWv8dUTMcMPIAnMBcvHs7dYVVISPz/9uDexQ0yAODwUwV7J4It6KDgEidBKFJwUMQPugQpCKWrOIlDwUFwbUm4wUUQXFwcOhThyF9QyOAiuDkoOKjoEEgFFz9B7c9DxCFkNmd4n0dRFEVRFEVRFMVLcSN+jzO2iGtRnI9pFEVRFEWx8j91Bs/gfXyPEP7EF/gY4S6uOH0WWNpujZndeQA/IIQQwq9Y4XPcxk28hxt4E6/iMi7iUdxnGE7EQZyPh2ISk3gqLsZzcSmmcTWuxuvxSLwdxTlbxPW4G2djGsUTcRiHcRiH8U6s7IF7cQk38SNCCJ86nRZY2m6Nmd06i2t4AxfwMO4xDP+xeDmKp20RH8WXTsQ0iokNcRQre+ZBfICv8CEOnE4L3MExjnGMYxzjN8wMwyAO4k7csiEej1/iuhMxjWJiQxzFyrATC3yDOeaYY445fsLMMAx/iyvxR9yKy3EhXovv4rO434mYRjGxIY5iZdiJBZa2W2NmGIZ/xQtxO36O4tt4N875RzwfX8djNsRb8YlhJxZY2m6NmWEYhj2xwNJ2a8wMwzDsiQWWtltjZhiGYU88ixdt9wqeNAzDqfIX19xt+KAAbCAAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjMtMTItMjRUMTg6MTI6NDgrMDA6MDCR6Fc+AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIzLTEyLTI0VDE4OjEyOjQ4KzAwOjAw4LXvggAAApN6VFh0TU9MIHJka2l0IDIwMjMuMDkuMwAAOI19VUtuGzEM3fsUukAGfPxJWnQRx2laFLGBNukduu/9UVKDdGRU6NgiZPqZ30f6VPL5fvn263f5+/DldCqF/vPuvZefQkSn15KXcn5++XotT2+P5w/N0+39+vajcC2C+E287rGPb7fXDw3KU3mgrZFX1sIbmtRaC200nuOnnEBsam7M8X0TNO4LoCSQNyFWTYtUyeLyL1ATKFvtDa4FW7cqwAJoCdRNtXZP104mLgug7xadmKRnWi4ixgtk3YMEuWAgjQlYpdP2vNnDpOetWmuyyqcHkjYWk6hkAD1qRat8QAPZmoGRzrmL2yohYCDDNXqLS1cjX+UDHkBvrUeUHBYrhZsFMNuTbdaKBCqiT0vX2R4J11GiFt1BhXFbAW1YlEZNRzZopLz07cNkNBlKiRRXxaqUqMMmBSfZRvlBIr5CZn90I+aubVQ9MvMlspdbsWg0S1QmG8lN+yqjCP4WNr0394yOg8BtlRBneywb2b1lQhUI6q2QvHPY0Grcw3tjclvFyWOAbOtRp1YTKojJsBVUI9CHDKCqZaQxvc7L6bXyJQlfzYFB44gjZn4F9YQGl0DWx2woBa+WodaARlLsYskRztqvGP98vdxtnX0PnW/Xy7GHECsm6vn55ZMcOyeVcmwWxNFjfyCOHVsiPhQ/dgHi1GPgEacdU404/Rhd5FT2e/egXQ1M84gheBo8DCHThGEInUYJQ9g0M7vGp9nAEHWagV3TRlSYGI8h+sTsgeSZwUjBmKiqUQ/miZGagmUinqZgnfiVVeOJRSN9nriiibKJERjZHaGMcOus6btVu89rJwHS5r0ee63C9F13klMzg/Lzx79g3E9/AJmqXe5EvNBXAAAAHXRFWHRyZGtpdFBLTCByZGtpdCAyMDIzLjA5LjMA776t3gB/YpoAAAF2elRYdFNNSUxFUyByZGtpdCAyMDIzLjA5LjMAACiRJZE9bisxDISv8kovIAv8Fxk3ATZFulSpDFc+QMo0Ofwbyh3329Fohrp/Pu7n+/uD5TwxPPRy/3wcG11exDZ5+vP1DYmdx8/z6cfl5OOF5HJ+HV/nv7+LTZfQGDwlbcW46SSlMABe7DpuMhl/ZMg0JrFxoxmZVQEitYibkBZX2qBZ5hQyblfImLxqYDLCkWhhprNwMymN9sekrjC+8gxzqDBI0AbLM6G5IgSFSp9zIebabHmwtCyX0ALSGSR9EperqncOm2YLaYHINXTLViV36fKlvL0U3QyVaJHbzoAsMEBk5ZTajZJiSas4dSWQo9AyhwokZG1U2gHhoOzLdgRnRNxJhSJ6qZqUOygnmTQhWGtrhEmtXwI+vDUaZphuNkmkfK8Kj4LrHPsQVOhdSXpLojK6rqBItgI7r9U2i1lIxzF+v9+wllGzhuAV1+/HG08aMbETx8P//QfPRn+4DeheawAAAABJRU5ErkJggg==) |
관련 화합물
힐 시스템의 공식은 C21H30O3
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |