몰 질량 of [(C2H5)2NCS2]3Co (코발트 트리스(디에틸디티오카바메이트)) is 503.7420 g/mol
[(C2H5)2NCS2]3Co 중량과 몰 사이의 변환
다음 물질의 원소 조성 [(C2H5)2NCS2]3Co
요소 | 상징 | 원자량 | 원자 | 질량 비율 |
---|
코발트 | Co | 58.933195 | 1 | 11.6991 | 질소 | N | 14.0067 | 3 | 8.3416 | 탄소 | C | 12.0107 | 15 | 35.7644 | 황 | S | 32.065 | 6 | 38.1922 | 수소 | H | 1.00794 | 30 | 6.0027 |
몰질량을 단계별로 계산하기 |
---|
먼저 [(C2H5)2NCS2]3Co에 있는 각 원자의 수를 계산합니다.
Co: 1, N: 3, C: 15, S: 6, H: 30
그런 다음 주기율표 의 각 원소에 대한 원자량을 검색합니다.
Co: 58.933195, N: 14.0067, C: 12.0107, S: 32.065, H: 1.00794
이제 원자 수와 원자량의 곱의 합을 계산합니다.
몰 질량 ([(C2H5)2NCS2]3Co) = ∑ Counti * Weighti =
Count(Co) * Weight(Co) + Count(N) * Weight(N) + Count(C) * Weight(C) + Count(S) * Weight(S) + Count(H) * Weight(H) =
1 * 58.933195 + 3 * 14.0067 + 15 * 12.0107 + 6 * 32.065 + 30 * 1.00794 =
503.7420 g/mol
|
화학 구조 |
---|
![[(C2H5)2NCS2]3Co - 화학 구조](data:images/png;base64,iVBORw0KGgoAAAANSUhEUgAAATwAAADOCAYAAACjKL6gAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAB3RJTUUH5wwYEhUFz7V2bgAAAAZiS0dEAP8A/wD/oL2nkwAAHvtJREFUeNrtnQmYFNXVhu+wyTbsiAIioIC4wLihISqLuEtcEvJHkxANETUmP2rciEkkigkxxoioETWYn5hEJ8EYCW4oIA44bIMgiLLIIiCy7zvU/52uU86donqme6anu7r6e5/ne2a6q7q7llPfvecuVcaQsHAUVJ+HgRASdvpBY6DJ0BvQPVCDJD7/K6gYmgKNg2rzkBJCwshw6DA0ARoK/R76DJoB1Ujg8zWhG6A8ff0+dLa1/FyoPQ8zISTTfE3N7gHf+419ppUIR0MXqVE2tt5/ELqSh5oQkmmehrYkkL521xrgOmgl9BLU1rfOIE1n/2bc9rxToBFQEfRP/b8FDzkhJFNMVUMqj3zoC+jfUDfoHK3FLYRqBawvhjcAagh1VVO9Rf+vw0NOCMkUc6BXK1hHzGqXL009FXKgvmpiD6jB1YOmaWrLlJYQEiqkV/aDCtZ5DPrI9550UOyBbtXXUqN7E3oH+plvXTFB9toSQjLO49BWqG456zwMLfa9J6nsAWggDyEhJFsogA5Bvw1Y5rXPXQsdhDpZyy7TlLY7DyEhJJu427hDU6QD4zfQME1Nx+lyGYs33bhj8+6A7oc2GbenlhBCso4e0BPQeOP2ssrMiY7W8oZqdrJMZmQMMsE9tIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCMk09aGroa/l4L53gL4BdWYYEBJ9+kG7jftgHHmozmioZQ7stzwvQ558tk33XZ6t8TvoKIYEIdFDajT/1YtddFAl/2+Efmyi++wIeYj3fGvf91r/LzLuk9EIIRFAHoozzLrId0APQfnQSdDrEb74j4PGWvu3ypQ+37Y/tMBaNhE6heFCSHancOus9FUu/lYB68rFv9S6+OWJYidk8b43UJPfo/uzU1/7HwJeGxoCbdH19muK34LhQ0j2cA5UbBlYsb5XHt7Fv826+EdCjbJov/OgAdBKU9pOVwi1q+BzzXRfvRR/kx6LmgwlQsJLW63FHdYL93Ot5eUl8R3Hai3Hu/jXQoOz4OI/G5pmmfwsqGeS31EATbG+42PoEoYVIeFChpnca9z2OblQd0EjjNt+V1nOhN63Lv450Hkh3PfWatCHdDvXqEHXqMJ3Sor/mS/F78AwIyQcKdwK38V5fAq//7vQ6tIUcf5j+Ldt5nfdqQdf/zl8bY1um7TXDTdu+10qqKNp7Xb9/n2a9uYz7AhJP+msgYmJPGTMoCL8FH7LQQ3SQQ3SaZiZXXdQA3M+c7flp5KC/hNqn0U1SEJIgmSwjU1qds5Y6LAa3+fQQCgvPbvudIXe1N8WfQylq40tFW2EhJAECVEvqnMOVGwZT7H7XrX9XjMI++oc1N/bBOFYOOnuSKlsLzAhJAlCOE7OqaG1u3VqQoe09tcqhb9RW41ti/4GTN5B7dbJ9Di5RMf5EUKSIAtmQkg7noOL3dmrprRDX1dxjqrTD1pg1SInQmGbCVHeTA5Csp4C6Ntxln3TuB0JiSBzVi+Ffqa60JQdK9dU09UDeiFt1nQ2xHNdnU5QoWVQi6EB1vLroTsh3z44MHXn3tL3Y98zPv73hJI+0DzL+CZB3QLWk97tG407hGiwvva40gS3CTbSz7Ti5UfSjaQtq+Msk5RzRALfcaLW1GSYw2zoA02NJmtw32bckf6OGt4o484EyBIc1ECdRZZhvaEmNkVf3+lbf4C+jzTVeUzTVkfT2DvdtDYrEMOWGzBsNKU3Z3jalA5juVvP+To1xOV63n+oy2dCzwZ8b2f9vgt4+ZFsMzxpZJcJ66i1lGnolqEPvzfuAOLnNMDfhU7LzsMUa3tDDcbZoG17PdTwVmrKe1yA4aFW66yonrbAtNJU42CfxoSk9lfoOZVxgvZwFqm5fYOGR6JqeJdo8H6rnHVaWRdBluO0dDs2Yv+L4T2pPbqvBBheXQipvVMQkVg5Gfq6/v+2xkd5TRI0PBJaw6sVoEQM7wHjDmXIwd68mOGN0treIXfwsN/wIssObZowFRjecwFx1ZWGRzJpeE45qsjwJOjX5+ah8wwv9v/zmt42zAHDO0pj474EDK+82KLhkYwYnjQ6dwrQygQM71HjNlTn5d6hK2N4zbR9b3gOGJ602cm0tIcTMLyXAuLqIhoeyXRKG0QiKe3NGrwdc9vwYq9vgmD+zt05kNIugV5JwPDYhkciZXhtjDsl7CkaXmymxgda04u64T1i3CFGnWh4JIqGJ2mMtNlMNe5MCXue6S+M23EhY7Sk1/Z06AfGvSFADhle7L1u0IEcMDwZRyn311th3AHHMkC9t3GfmpbssJTm0Bjj3sjgBcPb0ZNq5A5oRpxlU01pw7SMn/u1cSf8S3Av8q37PePebUPa8+SRiR+pmUb4luIOLmbnnoD3H4RmQ3UiHjsy3OgZU3pvwbVaGHq39HoN+m3A5+TGozJlrYe+FsO8Uv//JfQHXpYkTEjJXMTDQKoBySju52EgYeEt486DZftL2VrdIp1C1pHHolJIM4g8mOkTTXEJCQ3tNI3hE7BKDW+ZttudwGNRJWRq2os8DCTTSKnbVf+X+bFyMwDeK42GlwoKTOnDmS7WLIKQjCINzTL5f4JxnzVxFw8JDS9FSIeF9Oj+x7i3pDqPh4SEhXymsjS8aqIJDwEhNDxCCKHhEUIIDY8QQmh4hBBCwyOEEBoeIYTQ8AghNDweC0IIDY8QQqLB/k+hA7xbCiEkF1hm3JtgsoZHCKHhEUIIDY8QQmh4hBBCwyOEEBoeIYTQ8AghhIZHCCE0PEIIoeERQggNjxASeWpAA6F9NDxCSJTpC81Xo3NoeISQKHIcNNYyuVXQehoeISRKNICGQXvU3Hbp67rQVugwNBKqxUNFCMlW8qAB0Eo1OjG2Qqidtc6f9H1Zvhi6mIeNEJJtnAVNs9LXWVDPOOv+AtprrTsROpmHkBASdlpDo6FDal5roMHG7ZX10wWaYBndl9B2/X+/prmNeUgJIWGjDjTEMqx9alj5Aes2gUZYtbodxm3TOwpqrp87qMs26vfW5CEmhGScWbPMt157zbxh1dT+BXUIWNUbe7dO15NaoPTatgpY93RoqvWdJdAFPNqEkIxQUmK6z55tJkOO6DvfMS/j7d5xVu8FzbUMbApUkMDP9IeWW58bD7Xn0SeEpIXp000zGNxI6KCa3SZoSGFhYNrZVmtxXk/s51rLy0viJ+tDDxh3OMtXw1pGj469TwghqQemVnvOHDMYfzeo0e1HOjsaf1vEMalh0G5TduxdvSpsQhvPPK+6yszA767G7w90nKTMkxBCygfG0g8Gs8BLX2F8E/Heqf71xHxatzbX4d/VpnTs3YtqVqnivEmTzARvW6AibM+ZPEuEkCoxd67pBEMptMxlMTQgaF0xHTGfl14yRWp2s8WcqmO7xFildoff+0K36zB+f+zMmeYYnjVCSLJG1wQmMgLaq4ayAwYzbMmS2NCRMpSUmNZY/hcxHV13dceO5noTPPYupcybZxrIduE39+hv75TXkyfHpq0RQki5NacaWnNapwZySGpOxcVHDh1ZuNDUkc4KaJvXpiedGVi3Ubq3G9t4oq8muiReTZQQkuN4NTeY3c1WO90UpIgFcQymP9ZZZhnMeCjjdzzBdvXFdsy3tutdvNct3vqoCdaK07tMCIkS0uYmpmalg2Jgt0KT4tWO8P5JMMU3LENZhO+4NEz7JSamvcnrdRsPSG8yUu+W3jp4/U28v1CWqUrwmfMZFYREEEk7NW19CzpHjExMTnpjg9a3xt4dsMfeibmEdR9nzDDNsT9P2tuM171hfGfpGMKR0tOMv6dBt0gHjZr6fTC/4SIsv4rRQkj21+76qgmclmBtaYNdW4oz9i6UYHu7YB9exzZvkVoe/v4C2h5v/B7S+J5ijCKYZmdGCyFZjlzUamD3xVsHyy6GPrbS17dgGFl72yaYVwfdr7ukMwbqw0ggJAeQ3lhc8G+LkaEmMwv6yfz5pqnP8J6KYo+n9Dhjf5ZrWjsBtb9vS48zo4KQCCO9kzC6b+Ci/6d2XGzHxX+JZXgtsPyOKJpBUZHJx74N0k4bqe0t92qAhJCIM2+eORoX/0zpqc3B9L5AenRhgH9lJBCSI8DwbpfaTi6OS8N+vwzDm84oICS6Nbqu3msZeCyDdGVsWg6Y20n2zBFt01sDPcfIICSaF/312na1WNuxZBL+ZhmKkQP77t3Lby40Vdou5TjInGBGBiERRS5wmN010G0y80BuGJBD6XtX7PN1su8yU0Tu9ceIIIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCqsCPoHehf0P1c2i/86Dhuu/yLItaDIWUIcdyjB7bX+fYvjeAXoUmQTcyFMKDPL9hNORYWg0NVDOIMmdAU337Ph86j2FRZc6GSnzHthg6NwcKUHlY/QrfvhdC7RgWmaMudD+0U0/IPmgB9KF1koqgMyO47/KksuehQ7qf66D3oK36+jD0ItSGYZI0x0F/12Po6DGdAn2pr+WYPwsdHVGTn25dP2L48vS//fp6BzRUrz2SRvpDy6wTMx7qaJVQUrv7wrr4x0LHRGC/5QE9Qyxjk0AcCTXW5ZLKD4N26/Jd+roeQ6ZC5BjdC23XYyfHcASUr8sb6rHca1388vqoCOz7sZoleQXoWmgwVNMqBMZa19sqvcZINSPPn33TOvAfQ5eU0wYhAblH192pr7O1dOqnpa237xOhk+Os21YD1KulfJ4jKX5VCtDlvgK0Q5x1O2l65627WFPAbC5At/kK0EZx1u8DzbP2fTLUneGTeprpiTioB3qTnqiaCXz2RF+ALsmyAO0CTbC2/xPo8gQ/2wuaa31WUrMChtNXnK5NAXYKd0GCn70Q+sj67DvQqVlm8kt9Jn9CAp+roYWnneKPjWiKn5ESSKrWG6wSSKreLSrxXX2N26DvnWDpeTstxPveVFOqfbq9mzXlqpPk93gBus4XoK1yOK6a+wrQjUkUoDa1fPF5oArxmS5Ogl63roNF0GUpiM8tlYxPYqVwC3wpXFVLUAnQn2oN0QvQJ1CDbxae3e4t2/hjvQgdvSif1ou0KjTRAI1iG1SyKdxWE9wGWllaQs9YBioGeAsSiZrh2fV8iZ+nNOY9k7/NVH0YU2fov9Z1+il0Be0rcdLRRtJUAx0nv95ueMBC/BQuBCfDY9icPqiAIQXN94xexkB1q4bjO95Eow0q2QLU3wZ6Sop/w2pj7od015G4ujTDMYWYdlALXSrp9y6rFtoyDcf3ZNpZfDLRC4aUdixOvuOoJEj7ZSAoO0KvlG7H+Lfw5jVZWIMOI5mogXzLmHUTrbj6F9QhA3F1sZqubsegZ6rB5NNRg44UIWhjcvpDS60AlWDtmobfbQDB1J09+rs79XW6epJT2UYaNrwUPkNtTE4dzRq26bnFdji4+J1GafjtE6FCK56XQOmsxaeqjTRy+HsRZST7ORmq+tf2Bej+6gtQJ88NQGeV/tZhDdBMjWSvSi94WAvQkPQiOq0hySIO6ble66aYTo1qLED3+grQTLXTSi+4PRMomV7wSBHicWLOsRqgBzVoNqgRpujid86Gplml70yoZ0jOSzLjHMOIjBP70IRynJhzFlRknfdZ0NdTWIDi+nG+sApQXF9OWAbbJzPOMVIEzQSQtKNh+DbVOQN63wrQOdD5KSzp11RfSZ+SAP3MBM9kCSNZMhPgq5r9ytTV7J0e0AdWnM6Awjjf15vJssMEz2RJGxIY/4iz7P+gQQl+z7m6fomWsn827pgfY46ckCw1O+mJPT78Hh1r31thBRQufqe9LnsWKnbNrMxn+kGztR0HJ9rBiXa2+9py8kO+43U0rfWmWu3TtDffF8S3G3dMo4xxfE8/I22DT0IoMMwdAbX797X5oqJxkF56+l/9flzY5kFTOhPAK0D3mLJT6UI+m8ap72u73VXadhtbJrHzd9cgy3zuAehP+n8brcUd1u9YrbW8sM+maePL7oJu9CEF2KN6vuW8/8eUjhWUcy+DvIOyomu1cC6XYfqjQSxVF66I72v7j/T03WncsW5v6MUi1erXrNJ3ZpyNDXOAStsILjRntxWgl0JT9PXLvvUH6PvH+cyysNQsswYJ0Bd9AdpCTWW6nuPHtWB82LhzmP+k53m9cSfa23SxYqGi9hz53f1aeErnyi+NO9NkirbJrbEKUClsW2dZXCGtc8ZZ8YFatXO89foG3/pjIFzszuUag7ZZZtst0eSOPrOtWHhF35eRAhv1PP8Kusm4N8rYr5lHC13/6oDvlMJ1Z3UbXnP9kX8FtMGdoX9vMUdOSM5CnLZaqm6CmqvhSY/uAeiKAMOTEvt1aC7UK8ubI86CpkHj9PXP1Wj8hVc7DcqqGt41us4Pfe/LEAdvCpQUpLOyrwA9Iq56Q8iKHOyP01Bj5y0IF77TIsDwmuqy8VlYgNrYN/rwMslpmgn6OwsLtMafccO7QTegvAGyNTORq1djgOqgzZjhjYKegpa56esRhtc8dR0eGaeGFYgykPXtctatquFJk8fyCgrIxiYyN0SQGHGaWYaHC9r5FPrzkYZnx2AkyNfYaqdxMaScdVNieJvVaf36MgHDe0SrmzVMzvGV4TXXEvfhIw0vkuRpE8aICgxP0l2Zqzna0ksJGt5H2naTazHlGd7lbtYQa6M7/0jDiySXalz0SsDwHg/wq78lanj7NUD92puA4Y1SY8xBPMOL/X+Tdkh0zQHDq6tBd08FhndAtdPS7gQNT+53+EJuG17s9avQAh0nGnXDu1bj4tQEDG9xgF+tTEdK+5BxB3fm4F0SyhgearjOdG1jibrhCdIz+sdqTGnnGHdMYK4bXjsdQDwkBwyvj8bFxdWd0lbF8LzG5Qtz2/Bir0/XAcsv5IDhye3zS0z8NrSqGp58TnrrGuS24cXeGwpt1tpelA2vmWYEw8NieNJO19mUnWsp01ZkpsSMgOBsGPHg9Ble7L0nrMHFUTa8gRp4/idaSYzUS9LwZEhFgcobXtFDM4dHAn47wnEVaHgynnORxtU70b6mYm28W9Vngs55soYn68sdgmoma3gy7kkGlkrDoAwIvN9aT4YFbNbvkfFQMmhQevDWmkhPGA40vEY6iyLqhic1O3kspAxNwXEwj6m5rTDug14SNTy5MauMuZIbGGzRz3tGeJeanqS3T6qkM2Nsbhle7P1e2oERdcMTn/nQuIPIx2mBJ+NcZYZG9yQNT8bxyfTCFzWG5LZwsdsEDY3z4xJw3v285EEfZ+n/zbVW53dS+cExGuRDA1w6asF5PXRRwPsX6OyKXHhG7AVawIkJ/QH6rnE7NW7TOLgmIE5kxoYMTm5v3Bk6EmMttdYo9wAcba0vw50e0u+Xz93iBW5EY6qOxk7AVD4HtWnnOzkQU7U1jp7W8y7nv48WsvW1EhZ0rz0ZzGw/P/hKq8lFao5XVWZjztHS/PeG2MF4mXZWNOCxSBoZhyU1mllaEl/GQ/JVbW9A5m8imtXIVMZvasZRqTvmyAh7GR91L49lmeBcpqnICTwWSSNzqp/QdFbSmd48JLGY6qIx9SmPRaXpq5nB26YKtwiTdjnpQePzTml4qcSbX/kODwUNL8X8xrjz/BPmDK3VNYFk5LfcgqcGjyMNr4rcatyHy0jaIcMRZKjLCzwsNLwqIm13Mk5U7vHYTAvRpO76LOZ2u6azcveCbjymNLwUIB1g0jgt99+TUQGPa6FKaHhVRYY2/QX6t3GfBMgH0dPwCA2PEBoeoeERQsMjNDzC4KThERoeoeERQsMjNDxCaHiEhkcIDY/Q8AgNjxAaHqHhEULDIzQ8QlLPiFeNebDImOc68FiQ1PBCJzemRozjsSBhQ56yJXdiZQ2PpArv7tCs4REaHqHhEULDIzQ8Qmh4hIZHCA2P0PAIoeERGh4hNDxCwyM0PBoeoeERGh4hNDxCwyOEhkeyC3ka0moaHkkxBTQ8Ejbkeb1TNTBpeCRVBag8Q3WNxtRiHhKSaVoZ9/m8hzQoD9LwSAo4G5pmFaCiZTwsJFPUhoZAWzUY90Mjoc/19Uk8RKQSHAuNtgrOtdAw/X8lDw/JBP2ghVbJOxE6WZetgw7r8p48VCTJAnSbrwBtZNw2vMOqsdAxPFwkHUhv2QTL6KQR+QrfOgOtoJUA/QvUmoeOlEN/aKkVV+PNkU0iL6sJyvKd0D3QUTx0pDpoCo2A9mnAbYbuheoErCvm9mc1Oy+Ad2laUpeHklhIs8frVpwsgi6Ls24PaK4p26a3xLidGoSkhBpaY/tSA+yQphRHB6xbT01wu64r5jgG+ocVoKv0+wgLUElXD1gFqKSztQLWbaMx5xWgq7XwnW/F1btQNx5WUmkuusj0Cgiq08pJST7zpST2Ld77QPOs5ZOh7jzKucXkyaZW+/bmZvy7SeNADG8U1KycAnSHrrtbja6hLhdzHAytt75LOjta8kiThJk50xw3Z44ZO2uWWd+wYay2Vl6trAB6zzKyj6FLUlBbJBEDMdV39mwzf9w4Mz3BAnS5rwBtn0RtMV5zCyEuCxeahgjI30J7IQfacd995scmuN2tmQaZN3Rgk6YkNRP4qSambHvgFgZopI3uROg/GlOixZ07m8vjrO4fvF4CnZ/gT/k71D6BLucZIGVwHJOHIBwArdSAPAwVQu0CVveGDmwxZYcONKnET3eF3vQCtH59U1JcbC7mGYkG8+aZBsgShlkF6E55jbQ2qABt7itANyZRgPq52lg9vj17mtFiujwjRNLXsxEM07zSFwE5C+/FGzsnY+8WmLJj705JwWbEvveRR8xk2QZsz0Rswyk8O9lbgCKOBuJcfuEVoNJEgnN6TDkF6FZfAdq4ipsR+968PLNl6lSzANuwHxoJNeYZykFKSkxrBOVoBMAhDco1CMrBCNYa/nWx7KQLL4xNHavOVKEOAvMO/NZW3Z590KMM0OwCMdUD5+wDrwBFTM1ErH0tTmHbv3HjWMrqxdVrUKdUbs8NN5hjsE1jrDj/Att0Y1CckwiycKGpg5M+BNpuGcvIoiKT71937lzTBMtGSEoybZpZWrOm2WDctrZqG+w5Y4ZpriXxQd2+jbK9hYWVSm1ImvjwQ9NGanHaHCLnbbXU8qS2F2CKXbB8gqw3apSZYoIHr6cU/NYZ0PtWO+IcbO/5PHMRBie4P070Z9ZJH4/g6+hfT8wF79+M5et1vYNSGxw6NH3d/fi906H3rG0tQU3hAp7FcDF9uqmHc3OvdHDpedothWRQAYp1m2HZE9ABXXcz3vuJpp/pvAaW29cACvb2PJPRSjNOxYmeYp3kD/Fe7zhpRi9ZbqUkU/BeQZhMGrXADjyrmcff0YWYeimoo0vSR23T+1LXPSS1wXnzMjMcCb9f32fSu8SkZZQCz2oWIiUWAupaCTL8PReBdaGe2E3x0sPiYtPWl5J8Hi8lyWAtYntFtQjUArtj2fXY9uuwP10ZDSktfM6Evgf9j/R64hj/saLaN5b1geZZBdYkfDYUMyICYj4wDcf7tWU/sO4NWH4V9pUDm0NU6t6nPVLLJBC1FHsc+pG0yQWVdjp0YI9X2slrMZksaCda4wWo1CJ0KI00Ts+HPpLjgPW/zaioGtLui+P8hqaiUvtfKM0cqPlLofrDoA4Ab/C6ZXSr5FyFNAMq09ECzZCKgl4f7aBPZUgNNFuvq/3z58cGO5NMIqmeXvA/896TMU8oyVoFpBne2LsV9tg7lF7HZ0GK/nUZPmOl3XLhXSf7YA+pkTYjL03B8tewvEiE9e9mtCRViN4qnVtSe/bek3Q0qFC0xt7tSWDsXWgQ00Zc3GSl3bskftS0l0hnmpVFHK8x1cWLKY0rdoKk2Qgu05N1WkWpiZ4kr0SbLSaSTfuqAXoj9LrW7h6CtoUhBY9gKjtKamgVnA+vAF2VwOD1MJt7YxkOJSatr+dI2ySjIJwn6wSt4U1GidQ5zjqPWinhWugHUTAJXJTf1X16mm0sKT+2t+mg9Eek1hNUq5Pxdtbg9ekyoD0i19SL0maMfRq0ZAnvvRfG4LxJOydigedvhJU2F2/sHVLdRlHZb63ljdRUStqaXpWGZkZESi56abR/XtuGZZrYy/7BxIirceUNXs/ifT8WetcbRiO1XQ5jCRlSEuHEXCNDOLSN63e2MWRDO11lkcZkuei0w0ZqslczIlJ28beAsf0Ef2Wq1kG5+4lVyztaanpR3XeYXCdtm5Q2vg0yU4kREc4a3zPSU5trbVtaK5FetbcZBalFOiC057Iw1/ZdaneSQeC6up2REM4LX4ap7M7FqVl6S6JJjILUI7NgJI3N0fRemk3uYhRkPghlPNFD0mAsY9a011Y6Jl7JAXP7Hvbzf+UuKzpe7yZty2NgVv3YShPBrTKQW8fX3a7NBT/KgWvqYel9lpqddATi/+ekLdMeokMyhIxBwwl6R2ciSCPrHrz+q7S95EBgfh/7OVcb1mOzSnBhDuddMVJSq7lFB3J7c2ClHWto1JtJ9DZXf7TGqoo+kXGfjIrwtTU0ycUxaZK6R6n3OUzI8yiCpvPlyL7XDePso6rw/+EQodyuyyTAAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDIzLTEyLTI0VDE4OjIxOjA1KzAwOjAwBqDlBgAAACV0RVh0ZGF0ZTptb2RpZnkAMjAyMy0xMi0yNFQxODoyMTowNSswMDowMHf9XboAAAHHelRYdE1PTCByZGtpdCAyMDIzLjA5LjMAADiNjVXLbuMwDLz7K/gDETTUw9Khh8Qp2sW2DtCm/Yee9rL/j5IJYtFALES2DEkZ0vJohhlI28fx789/Whofh4HId+5aK30H7/3wTjqgw/PLn5mm8/5wW5lOX/P5kzgRQ2LkWmP359P7bQU00Y5dqsWPmbxLmZOXCOcvrYWyAuG4Vh8KwQVsAAPNZnU7YZSEj+RLgntkg1lwy+rOuxrG+8CRPs2XyCiXDWQRZBdI0+vL0w70vX97wi2qriiN2zuGX3GatjkALKm9lGxZ7WUMltZexmh5Dc5vAtOKV+68O1te7wDv0opRNhIeEAKKAKMrdYRsvqMsVGE1O9SMxF3t60GNLtaEil5GVjsVN9bIXLsZ9ZyWV/fUykHIWr6mp1aOglx2+bBcpUxM/xoobxxHuETtlrDn+bgqJNfScjjNx1Za9OJWQGRCoZUJSI+tGkB6aqbXX3PzNksfm4Mh09JsCjEdfDMg1FuAMRrUQ2BjKJ2KDYxzrphoLMIqfyTjBVwe2YgeqkwUI26oBFGNcKFaY6tQqKgYRopXDBvNscqEgxEXLivRnoFlXOe3PwIZD7/CTTEIksYZjQAAAB10RVh0cmRraXRQS0wgcmRraXQgMjAyMy4wOS4zAO++rd4Af2KaAAAAuHpUWHRTTUlMRVMgcmRraXQgMjAyMy4wOS4zAAAYlYWPMQ7CMAxFr8LYisSyEzuJhZi8s3SsegYuwOEBQa3ihS353/7P3+w2mc02XZd5XfIG9ldY7X6u2+kx5QKiA0dCkFYkXTJBUUVOBJXeAroVnbiKKSNo7ceU16ONflh2wckcyeJkDmQJZHZyBfwNKd/R+K/haIahnchLNSBtJO53YBVS9wd05VLd3+e9+h7oRfcEFzC1T9j8eAImWlscfPGqJAAAAABJRU5ErkJggg==) |
모습 |
---|
코발트 트리스(디에틸디티오카바메이트)는 유기 용매에 용해되는 반자성 녹색 고체입니다. |
힐 시스템의 공식은 C15H30CoN3S6
|
계산 몰 질량 (몰 중량)화합물의 몰 질량을 계산하려면 공식을 입력하고 '계산'을 클릭하세요. 화학식에서 당신은 다음과 같은 것들을 사용할 수 있습니다 :
- 어떤 화학 원소. 화학 기호의 첫 글자를 대문자로 하고 나머지 글자는 소문자를 사용합니다. Ca, Fe, Mg, Mn, S, O, H, C, N, Na, K, Cl, Al.
- 기능 그룹 :D, T, Ph, Me, Et, Bu, AcAc, For, Tos, Bz, TMS, tBu, Bzl, Bn, Dmg
- 괄호() 또는 대괄호 []입니다.
- 관용명
몰 질량 계산의 예 : NaCl, Ca(OH)2, K4[Fe(CN)6], CuSO4*5H2O, 질산, 과망간산 칼륨, 에탄올, 과당, 카페인, 물.
몰 질량 계산기는 또한 일반적인 화합물 이름, Hill 공식, 원소 구성, 질량 백분율 구성, 원자 백분율 구성을 표시하고 무게를 몰수로 또는 그 반대로 변환할 수 있습니다.
컴퓨팅 분자량 (분자량)
화합물의 분자량을 계산하려면 공식을 입력하고 각 원소 뒤에 동위원소 질량수를 대괄호 안에 지정하세요.
분자량 계산의 예 :
C[14]O[16]2,
S[34]O[16]2.
정의
- molecular_mass_def
- 몰질량은 (molar weight) 어떤 물질이 1몰 있을때의 질량을 이야기 하고 단위는 g/mol입니다.
- 두더지는 원자나 분자와 같은 매우 작은 물질을 대량으로 측정하기 위한 표준 과학 단위입니다. 1몰에는 정확히 6.022 ×10 23 입자(아보가드로 수)가 들어 있습니다.
몰 질량을 계산하는 단계
- 화합물 식별: 화합물의 화학식을 적습니다. 예를 들어, 물은 H 2 O입니다. 이는 수소 원자 2개와 산소 원자 1개를 포함한다는 의미입니다.
- 원자 질량 찾기: 화합물에 존재하는 각 원소의 원자 질량을 찾아보세요. 원자 질량은 일반적으로 주기율표에서 찾을 수 있으며 원자 질량 단위(amu)로 표시됩니다.
- 각 원소의 몰 질량을 계산합니다. 각 원소의 원자 질량에 화합물에 포함된 해당 원소의 원자 수를 곱합니다.
- 합산: 3단계의 결과를 더하여 화합물의 총 몰 질량을 구합니다.
예: 몰질량 계산
이산화탄소(CO 2 )의 몰질량을 계산해 보겠습니다.
- 탄소(C)의 원자 질량은 약 12.01 amu입니다.
- 산소(O)의 원자 질량은 약 16.00amu입니다.
- CO 2 에는 탄소 원자 1개와 산소 원자 2개가 있습니다.
- 이산화탄소의 몰 질량은 12.01 + (2 × 16.00) = 44.01 g/mol입니다.
각 원소와 동위원소의 질량을 NIST기사를 참조하십시오 href='http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl'> a> 관련 : 아미노산의 분자량 |